Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorPAICU, Marius
hal.structure.identifierAcademy of Mathematics and Systems Science [AMSS]
dc.contributor.authorZHANG, Ping
hal.structure.identifierSchool of Mathematical Sciences, Peking University, 100871, P. R. China
dc.contributor.authorZHANG, Zhifei
dc.date.accessioned2024-04-04T02:17:26Z
dc.date.available2024-04-04T02:17:26Z
dc.date.issued2013
dc.identifier.issn0360-5302
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189228
dc.description.abstractEnIn this paper, we prove the global existence and uniqueness of solution to d-dimensional (for $d=2,3$) incompressible inhomogeneous Navier-Stokes equations with initial density being bounded from above and below by some positive constants, and with initial velocity $u_0\in H^s(\R^2)$ for $s>0$ in 2-D, or $u_0\in H^1(\R^3)$ satisfying $\|u_0\|_{L^2}\|\nabla u_0\|_{L^2}$ being sufficiently small in 3-D. This in particular improves the most recent well-posedness result in [10], which requires the initial velocity $u_0\in H^2(\R^d)$ for the local well-posedness result, and a smallness condition on the fluctuation of the initial density for the global well-posedness result.
dc.language.isoen
dc.publisherTaylor & Francis
dc.title.enGlobal unique solvability of inhomogeneous Navier-Stokes equations with bounded density
dc.typeArticle de revue
dc.identifier.doi10.1080/03605302.2013.780079
dc.subject.halPhysique [physics]/Mécanique [physics]/Mécanique des fluides [physics.class-ph]
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des fluides [physics.class-ph]
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
dc.identifier.arxiv1301.0160
bordeaux.journalCommunications in Partial Differential Equations
bordeaux.page1208-1234
bordeaux.volume38
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue7
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00994640
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00994640v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Communications%20in%20Partial%20Differential%20Equations&rft.date=2013&rft.volume=38&rft.issue=7&rft.spage=1208-1234&rft.epage=1208-1234&rft.eissn=0360-5302&rft.issn=0360-5302&rft.au=PAICU,%20Marius&ZHANG,%20Ping&ZHANG,%20Zhifei&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée