Global unique solvability of inhomogeneous Navier-Stokes equations with bounded density
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | PAICU, Marius | |
hal.structure.identifier | Academy of Mathematics and Systems Science [AMSS] | |
dc.contributor.author | ZHANG, Ping | |
hal.structure.identifier | School of Mathematical Sciences, Peking University, 100871, P. R. China | |
dc.contributor.author | ZHANG, Zhifei | |
dc.date.accessioned | 2024-04-04T02:17:26Z | |
dc.date.available | 2024-04-04T02:17:26Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 0360-5302 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/189228 | |
dc.description.abstractEn | In this paper, we prove the global existence and uniqueness of solution to d-dimensional (for $d=2,3$) incompressible inhomogeneous Navier-Stokes equations with initial density being bounded from above and below by some positive constants, and with initial velocity $u_0\in H^s(\R^2)$ for $s>0$ in 2-D, or $u_0\in H^1(\R^3)$ satisfying $\|u_0\|_{L^2}\|\nabla u_0\|_{L^2}$ being sufficiently small in 3-D. This in particular improves the most recent well-posedness result in [10], which requires the initial velocity $u_0\in H^2(\R^d)$ for the local well-posedness result, and a smallness condition on the fluctuation of the initial density for the global well-posedness result. | |
dc.language.iso | en | |
dc.publisher | Taylor & Francis | |
dc.title.en | Global unique solvability of inhomogeneous Navier-Stokes equations with bounded density | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1080/03605302.2013.780079 | |
dc.subject.hal | Physique [physics]/Mécanique [physics]/Mécanique des fluides [physics.class-ph] | |
dc.subject.hal | Sciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des fluides [physics.class-ph] | |
dc.subject.hal | Mathématiques [math]/Equations aux dérivées partielles [math.AP] | |
dc.identifier.arxiv | 1301.0160 | |
bordeaux.journal | Communications in Partial Differential Equations | |
bordeaux.page | 1208-1234 | |
bordeaux.volume | 38 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 7 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00994640 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00994640v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Communications%20in%20Partial%20Differential%20Equations&rft.date=2013&rft.volume=38&rft.issue=7&rft.spage=1208-1234&rft.epage=1208-1234&rft.eissn=0360-5302&rft.issn=0360-5302&rft.au=PAICU,%20Marius&ZHANG,%20Ping&ZHANG,%20Zhifei&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |