Mostrar el registro sencillo del ítem

dc.rights.licenseopenen_US
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorMATHIEU, Alexis
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorAJANA, Soufiane
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorKOROBELNIK, Jean-Francois
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorLE GOFF, Melanie
ORCID: 0000-0003-2848-6287
dc.contributor.authorGONTIER, Brigitte
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorROUGIER, Marie-Benedicte
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorDELCOURT, Cecile
ORCID: 0000-0002-2099-0481
IDREF: 035105291
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorDELYFER, Marie-Noelle
dc.date.accessioned2024-03-14T08:04:26Z
dc.date.available2024-03-14T08:04:26Z
dc.date.issued2024-02-12
dc.identifier.issn1755-3768 (Electronic) 1755-375X (Linking)en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/188795
dc.description.abstractEnOBJECTIVE: This study aimed to develop a deep learning (DL) model, named 'DeepAlienorNet', to automatically extract clinical signs of age-related macular degeneration (AMD) from colour fundus photography (CFP). METHODS AND ANALYSIS: The ALIENOR Study is a cohort of French individuals 77 years of age or older. A multi-label DL model was developed to grade the presence of 7 clinical signs: large soft drusen (>125 μm), intermediate soft (63-125 μm), large area of soft drusen (total area >500 μm), presence of central soft drusen (large or intermediate), hyperpigmentation, hypopigmentation, and advanced AMD (defined as neovascular or atrophic AMD). Prediction performances were evaluated using cross-validation and the expert human interpretation of the clinical signs as the ground truth. RESULTS: A total of 1178 images were included in the study. Averaging the 7 clinical signs' detection performances, DeepAlienorNet achieved an overall sensitivity, specificity, and AUROC of 0.77, 0.83, and 0.87, respectively. The model demonstrated particularly strong performance in predicting advanced AMD and large areas of soft drusen. It can also generate heatmaps, highlighting the relevant image areas for interpretation. CONCLUSION: DeepAlienorNet demonstrates promising performance in automatically identifying clinical signs of AMD from CFP, offering several notable advantages. Its high interpretability reduces the black box effect, addressing ethical concerns. Additionally, the model can be easily integrated to automate well-established and validated AMD progression scores, and the user-friendly interface further enhances its usability. The main value of DeepAlienorNet lies in its ability to assist in precise severity scoring for further adapted AMD management, all while preserving interpretability.
dc.description.sponsorship/ - ANR-10-PRSP-0011en_US
dc.language.isoENen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subject.enArtificial intelligence
dc.subject.enDeep learning
dc.subject.enFundus photography
dc.subject.enImage interpretation
dc.subject.enComputer-assisted
dc.subject.enMacular degeneration
dc.title.enDeepAlienorNet: A deep learning model to extract clinical features from colour fundus photography in age-related macular degeneration
dc.title.alternativeActa Ophthalmolen_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1111/aos.16660en_US
dc.subject.halSciences du Vivant [q-bio]/Santé publique et épidémiologieen_US
dc.identifier.pubmed38345159en_US
bordeaux.journalActa Ophthalmologicaen_US
bordeaux.hal.laboratoriesBordeaux Population Health Research Center (BPH) - UMR 1219en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionINSERMen_US
bordeaux.teamLEHA_BPHen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.identifier.funderIDFondation Voir et Entendreen_US
bordeaux.identifier.funderIDCaisse nationale de solidarité pour l'autonomieen_US
hal.identifierhal-04504008
hal.version1
hal.date.transferred2024-05-27T07:27:29Z
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exporttrue
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Acta%20Ophthalmologica&rft.date=2024-02-12&rft.eissn=1755-3768%20(Electronic)%201755-375X%20(Linking)&rft.issn=1755-3768%20(Electronic)%201755-375X%20(Linking)&rft.au=MATHIEU,%20Alexis&AJANA,%20Soufiane&KOROBELNIK,%20Jean-Francois&LE%20GOFF,%20Melanie&GONTIER,%20Brigitte&rft.genre=article


Archivos en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem