Mostrar el registro sencillo del ítem

dc.rights.licenseopenen_US
dc.contributor.authorTSUCHIDA, Ami
dc.contributor.authorBOUTINAUD, Philippe
dc.contributor.authorVERRECCHIA, Violaine
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorTZOURIO, Christophe
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorDEBETTE, Stephanie
dc.contributor.authorJOLIOT, Marc
dc.date.accessioned2024-03-11T14:59:30Z
dc.date.available2024-03-11T14:59:30Z
dc.date.issued2024-01-01
dc.identifier.issn1097-0193 (Electronic) 1065-9471 (Print) 1065-9471 (Linking)en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/188689
dc.description.abstractEnWhite matter hyperintensities (WMHs) are well-established markers of cerebral small vessel disease, and are associated with an increased risk of stroke, dementia, and mortality. Although their prevalence increases with age, small and punctate WMHs have been reported with surprisingly high frequency even in young, neurologically asymptomatic adults. However, most automated methods to segment WMH published to date are not optimized for detecting small and sparse WMH. Here we present the SHIVA-WMH tool, a deep-learning (DL)-based automatic WMH segmentation tool that has been trained with manual segmentations of WMH in a wide range of WMH severity. We show that it is able to detect WMH with high efficiency in subjects with only small punctate WMH as well as in subjects with large WMHs (i.e., with confluency) in evaluation datasets from three distinct databases: magnetic resonance imaging-Share consisting of young university students, MICCAI 2017 WMH challenge dataset consisting of older patients from memory clinics, and UK Biobank with community-dwelling middle-aged and older adults. Across these three cohorts with a wide-ranging WMH load, our tool achieved voxel-level and individual lesion cluster-level Dice scores of 0.66 and 0.71, respectively, which were higher than for three reference tools tested: the lesion prediction algorithm implemented in the lesion segmentation toolbox (LPA: Schmidt), PGS tool, a DL-based algorithm and the current winner of the MICCAI 2017 WMH challenge (Park et al.), and HyperMapper tool (Mojiri Forooshani et al.), another DL-based method with high reported performance in subjects with mild WMH burden. Our tool is publicly and openly available to the research community to facilitate investigations of WMH across a wide range of severity in other cohorts, and to contribute to our understanding of the emergence and progression of WMH.
dc.description.sponsorshipEtude de cohorte sur la santé des étudiants - ANR-10-COHO-0005en_US
dc.description.sponsorshipStopping cognitive decline and dementia by fighting covert cerebral small vessel diseaseen_US
dc.description.sponsorshipLaboratoire pour les applications en imagerie biomédicale - ANR-16-LCV2-0006en_US
dc.description.sponsorshipTranslational Research and Advanced Imaging Laboratory - ANR-10-LABX-0057en_US
dc.description.sponsorshipInitiative d'excellence de l'Université de Bordeaux - ANR-10-IDEX-0003en_US
dc.language.isoENen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subject.enautomatic segmentation
dc.subject.encerebral small vessel disease
dc.subject.endeep-learning
dc.subject.enmagnetic resonance imaging
dc.subject.enwhite matter hyperintensities
dc.title.enEarly detection of white matter hyperintensities using SHIVA-WMH detector
dc.title.alternativeHum Brain Mappen_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1002/hbm.26548en_US
dc.subject.halSciences du Vivant [q-bio]/Santé publique et épidémiologieen_US
dc.identifier.pubmed38050769en_US
bordeaux.journalHuman Brain Mappingen_US
bordeaux.pagee26548en_US
bordeaux.volume45en_US
bordeaux.hal.laboratoriesBordeaux Population Health Research Center (BPH) - UMR 1219en_US
bordeaux.issue1en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionINSERMen_US
bordeaux.teamELEANOR_BPHen_US
bordeaux.teamHEALTHY_BPHen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.identifierhal-04499938
hal.version1
hal.date.transferred2024-03-11T14:59:33Z
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exporttrue
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Human%20Brain%20Mapping&rft.date=2024-01-01&rft.volume=45&rft.issue=1&rft.spage=e26548&rft.epage=e26548&rft.eissn=1097-0193%20(Electronic)%201065-9471%20(Print)%201065-9471%20(Linking)&rft.issn=1097-0193%20(Electronic)%201065-9471%20(Print)%201065-9471%20(Linking)&rft.au=TSUCHIDA,%20Ami&BOUTINAUD,%20Philippe&VERRECCHIA,%20Violaine&TZOURIO,%20Christophe&DEBETTE,%20Stephanie&rft.genre=article


Archivos en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem