Mostrar el registro sencillo del ítem
Statistical classification of treatment responses in mouse clinical trials for stratified medicine in oncology drug discovery
dc.rights.license | open | en_US |
hal.structure.identifier | Statistics In System biology and Translational Medicine [SISTM] | |
hal.structure.identifier | Bordeaux population health [BPH] | |
dc.contributor.author | SAVEL, Helene | |
hal.structure.identifier | IPSEN Innovation | |
dc.contributor.author | MEYER-LOSIC, Florence | |
hal.structure.identifier | Bordeaux population health [BPH] | |
dc.contributor.author | PROUST LIMA, Cecile
ORCID: 0000-0002-9884-955X IDREF: 114375747 | |
hal.structure.identifier | Statistics In System biology and Translational Medicine [SISTM] | |
hal.structure.identifier | Institut Bergonié [Bordeaux] | |
hal.structure.identifier | Bordeaux population health [BPH] | |
dc.contributor.author | RICHERT, Laura | |
dc.date.accessioned | 2024-03-11T14:08:48Z | |
dc.date.available | 2024-03-11T14:08:48Z | |
dc.date.issued | 2024-01-09 | |
dc.identifier.issn | 2045-2322 | en_US |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/188684 | |
dc.description.abstractEn | Translational oncology research strives to explore a new aspect: identifying subgroups that exhibit treatment response even during pre-clinical phases. In this study, we focus on PDX models and their implementation in mouse clinical trials (MCT). Our primary objective was to identify subgroups with different treatment responses using Latent Class Mixed Model (LCMM).We used a public dataset and focused on one treatment, encorafenib, and two indications, melanoma and colorectal cancer, for which efficacy depends on a specific mutation BRAF V600E. One LCMM per indication was implemented to classify treatment responses at the PDX level, analyzing the growth kinetics of treated tumors and matched controls within the PDX models. A simulation study was carried out to explore the performance of LCMM in this context. For both applications, LCMM identified classes for which the higher the proportion of mutated BRAF V600E PDX models the greater the treatment effect, which is aligned with encorafenib use recommendations. The simulation study showed that LCMM could identify classes with large differences in treatment effects. LCMM is a suitable tool for MCT to explore treatment response subgroups of PDX. Once these subgroups are defined, characterization of their phenotypes/genotypes could be performed to explore treatment response predictors. | |
dc.language.iso | EN | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by/ | |
dc.title.en | Statistical classification of treatment responses in mouse clinical trials for stratified medicine in oncology drug discovery | |
dc.type | Article de revue | en_US |
dc.identifier.doi | 10.1038/s41598-023-51055-7 | en_US |
dc.subject.hal | Statistiques [stat] | en_US |
dc.subject.hal | Sciences du Vivant [q-bio]/Santé publique et épidémiologie | en_US |
bordeaux.journal | Scientific Reports | en_US |
bordeaux.page | 934 | en_US |
bordeaux.volume | 14 | en_US |
bordeaux.hal.laboratories | Bordeaux Population Health Research Center (BPH) - UMR 1219 | en_US |
bordeaux.issue | 1 | en_US |
bordeaux.institution | Université de Bordeaux | en_US |
bordeaux.institution | INSERM | en_US |
bordeaux.institution | INRIA | en_US |
bordeaux.team | SISTM_BPH | en_US |
bordeaux.team | BIOSTAT_BPH | en_US |
bordeaux.peerReviewed | oui | en_US |
bordeaux.inpress | non | en_US |
bordeaux.identifier.funderID | Ipsen | en_US |
bordeaux.import.source | hal | |
hal.identifier | hal-04403059 | |
hal.version | 1 | |
hal.popular | non | en_US |
hal.audience | Internationale | en_US |
hal.export | false | |
workflow.import.source | hal | |
dc.rights.cc | Pas de Licence CC | en_US |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Scientific%20Reports&rft.date=2024-01-09&rft.volume=14&rft.issue=1&rft.spage=934&rft.epage=934&rft.eissn=2045-2322&rft.issn=2045-2322&rft.au=SAVEL,%20Helene&MEYER-LOSIC,%20Florence&PROUST%20LIMA,%20Cecile&RICHERT,%20Laura&rft.genre=article |