Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierLittoral, Environnement, Télédétection, Géomatique [LETG - Rennes ]
dc.contributor.authorKRÖBER, F.
hal.structure.identifierLittoral, Environnement, Télédétection, Géomatique [LETG - Rennes ]
dc.contributor.authorGARCIA, G. Fernandez
hal.structure.identifierL'Avion Jaune
dc.contributor.authorGUIOTTE, F.
hal.structure.identifierEnvironnements et Paléoenvironnements OCéaniques [EPOC]
dc.contributor.authorDELERUE, Florian
hal.structure.identifierLittoral, Environnement, Télédétection, Géomatique [LETG - Rennes ]
dc.contributor.authorCORPETTI, T.
hal.structure.identifierObservation de l’environnement par imagerie complexe [OBELIX]
dc.contributor.authorLEFÈVRE, S.
dc.date.accessioned2024-03-07T09:07:55Z
dc.date.available2024-03-07T09:07:55Z
dc.date.conference2023-07-16
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/188614
dc.description.abstractEnThis study aims at recovering above-ground biomass information from ultra-high resolution UAV RGB-NIR orthophotos. We focus on a realistic scenario where a limited number of training samples for a landscape with heterogeneous herbaceous vegetation is given. Consequently, we explore different machine learning methods explicitly addressing the limitations of small training samples and compare their predictions quantitatively and qualitatively. Our results show that random forest models perform similarly well to deep learning models. While simpler machine learning models may, therefore, still be preferable, our study also points the way to promising architectures and regularisation techniques for deep learning approaches. Beyond vegetation cover, accurate regression of other variables, including vegetation height, volume and biomass remains a difficult task regardless of the model choice.
dc.language.isoENen_US
dc.publisherIEEEen_US
dc.subject.envegetation biomass regression random forest deep learning semi-supervised learning transfer learning UAV
dc.subject.envegetation biomass regression
dc.subject.enrandom forest
dc.subject.endeep learning
dc.subject.ensemi-supervised learning
dc.subject.entransfer learning
dc.subject.enUAV
dc.subject.envegetation biomass regression random forest deep learning semi-supervised learning transfer learning UAV
dc.title.enLearning UAV-Based Above-Ground Biomass Regression Models in Sparse Training Data Environments
dc.typeCommunication dans un congrèsen_US
dc.identifier.doi10.1109/IGARSS52108.2023.10281513en_US
dc.subject.halSciences de l'environnementen_US
bordeaux.page3322-3325en_US
bordeaux.hal.laboratoriesEPOC : Environnements et Paléoenvironnements Océaniques et Continentaux - UMR 5805en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionCNRSen_US
bordeaux.conference.titleIGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposiumen_US
bordeaux.teamECOBIOCen_US
bordeaux.conference.cityPasadenaen_US
bordeaux.import.sourcehal
hal.identifierhal-04310706
hal.version1
hal.invitednonen_US
hal.proceedingsnonen_US
hal.conference.end2023-07-21
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exportfalse
workflow.import.sourcehal
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.spage=3322-3325&rft.epage=3322-3325&rft.au=KR%C3%96BER,%20F.&GARCIA,%20G.%20Fernandez&GUIOTTE,%20F.&DELERUE,%20Florian&CORPETTI,%20T.&rft.genre=unknown


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée