Mostrar el registro sencillo del ítem

dc.rights.licenseopenen_US
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorDIALLO, Gayo
ORCID: 0000-0002-9799-9484
IDREF: 112800084
dc.date.accessioned2024-02-22T14:32:13Z
dc.date.available2024-02-22T14:32:13Z
dc.date.issued2023-08-19
dc.date.conference2023-08-19
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/188316
dc.description.abstractEnPublic health prioritizes community medical conditions and population health factors. Promoting population health and preventing disease outbreaks and epidemics are the main goals. Targeting populations based on territorial factors, socio-economic and environmental determinants, and phenotypic profiles is essential for developing precise preventive or health promotion measures. Digital Twins (DTs) technology enables data acquisition, hypothesis generation, and in-silico experiments and comparisons. Thanks to Internet of Things and Artificial Intelligence, digital twins can collect a wider range of real-time data from various sources in addition to traditional data sources like Electronic Health Records. Thus, comprehensive simulations of physical entities, their functionality, and their evolution can be created and maintained. This position paper proposes using DT technology, Public Health instruments, knowledge graphs, and AI to enable Precision and Predictive Public Health for population health. In particular, it introduces Neuro-symbolic DTs, which combine semantic reasoning supported by a knowledge graph, deep-learning’s predictive power, and a DT’s agility to simulate public health interventions in a virtual environment.
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subject.enPrecision Public Health
dc.subject.enNeuro-symbolic AI
dc.subject.enDigital Twins
dc.subject.enKnowledge Graphs
dc.title.enNeuro-Symbolic Digital Twins for Precision and Predictive Public Health
dc.typeCommunication dans un congrèsen_US
dc.subject.halSciences du Vivant [q-bio]/Santé publique et épidémiologieen_US
bordeaux.volume3541en_US
bordeaux.hal.laboratoriesBordeaux Population Health Research Center (BPH) - UMR 1219en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionINSERMen_US
bordeaux.conference.titleAI4DT&CP@IJCAI 2023 : The First Workshop on AI for Digital Twins and Cyber-Physical Applications in conjunction with 32nd IJCAIen_US
bordeaux.countrycnen_US
bordeaux.teamAHEAD_BPHen_US
bordeaux.conference.cityMacaoen_US
hal.identifierhal-04473272
hal.version1
hal.date.transferred2024-02-22T14:32:15Z
hal.invitedouien_US
hal.proceedingsnonen_US
hal.conference.end2023-08-19
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exporttrue
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2023-08-19&rft.volume=3541&rft.au=DIALLO,%20Gayo&rft.genre=unknown


Archivos en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem