Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorPALMIER, Camille
hal.structure.identifierLaboratoire de l'intégration, du matériau au système [IMS]
dc.contributor.authorGIREMUS, Audrey
IDREF: 163238766
dc.contributor.authorMINVIELLE, Pierre
dc.contributor.authorVACAR, Cornelia
hal.structure.identifierLaboratoire de l'intégration, du matériau au système [IMS]
dc.contributor.authorBOURMAUD, Guillaume
IDREF: 191217530
dc.date.accessioned2024-01-09T08:48:19Z
dc.date.available2024-01-09T08:48:19Z
dc.date.issued2023-09-04
dc.date.conference2023-09-04
dc.identifier.issn2473-2001en_US
dc.identifier.urioai:crossref.org:10.23919/eusipco58844.2023.10289848
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/186967
dc.description.abstractTerrain-aided navigation is often used for unmanned aerial vehicles. This method consists in estimating the current dynamics and position of a vehicle by matching terrain profiles obtained by exteroceptive sensors with onboard maps. Whereas the resolution of the map plays a crucial role in minimising positioning errors, accurate reference maps are difficult to upload when transmission restrictions are experienced. In this context of sparse communications, we propose to model the maps by Gaussian Processes completely characterised by a mean function that can be interpreted as a low resolution approximation of the map and a covariance kernel to account for the spatial correlations. The objective of this paper is then to perform simultaneous localisation and mapping by leveraging radio-altimetric data. The inference is carried out by a non-linear Bayesian filter that takes advantage of the conditional linear Gaussianity of the state space model: the Rao-Blackwellised particle filter.
dc.language.isoENen_US
dc.publisherIEEEen_US
dc.sourcecrossref
dc.subjectMaximum likelihood detection
dc.subjectSimultaneous localization and mapping
dc.subjectNavigation
dc.subjectGaussian processes
dc.subjectNonlinear filters
dc.subjectSignal processing
dc.subjectSensor phenomena and characterization
dc.subjectTerrain-Aided SLAM
dc.subjectGaussian Processes
dc.subjectParticle Filtering
dc.title.enTerrain-Aided SLAM with Limited-Size Reference Maps Using Gaussian Processes
dc.typeActes de congrès/Proceedingsen_US
dc.identifier.doi10.23919/eusipco58844.2023.10289848en_US
dc.subject.halSciences de l'ingénieur [physics]en_US
bordeaux.hal.laboratoriesIMS : Laboratoire de l'Intégration du Matériau au Système - UMR 5218en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.conference.title2023 31st European Signal Processing Conference (EUSIPCO)en_US
bordeaux.countryfien_US
bordeaux.teamSIGNAL AND IMAGE PROCESSING-MOTIVEen_US
bordeaux.conference.cityHelsinkien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcedissemin
hal.identifierhal-04381446
hal.version1
hal.date.transferred2024-01-09T08:48:20Z
hal.conference.end2023-09-08
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exporttrue
workflow.import.sourcedissemin
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2023-09-04&rft.eissn=2473-2001&rft.issn=2473-2001&rft.au=PALMIER,%20Camille&GIREMUS,%20Audrey&MINVIELLE,%20Pierre&VACAR,%20Cornelia&BOURMAUD,%20Guillaume&rft.genre=unknown


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée