Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorESSOUAYED, Elyess
dc.contributor.authorFERREE, T.
hal.structure.identifierEnvironnements et Paléoenvironnements OCéaniques [EPOC]
dc.contributor.authorCOHEN, Gregory
dc.contributor.authorGUISERIX, N.
hal.structure.identifierEnvironnements et Paléoenvironnements OCéaniques [EPOC]
dc.contributor.authorATTEIA, Olivier
dc.date.accessioned2023-11-22T10:22:23Z
dc.date.available2023-11-22T10:22:23Z
dc.date.issued2021-11-26
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/186054
dc.description.abstractEnThis study presents an inverse modeling strategy for organic contaminant source localization. The approach infers the hydraulic conductivity field, the dispersivity, and the source zone location. Beginning with initial observed data of contaminant concentration and hydraulic head, the method follows an iterative strategy of adding new observations and revising the source location estimate. Non-linear optimization using the Gauss-Levenberg-Marquardt Algorithm (PEST++) is tested at a real contaminated site. Then a limited number of drilling locations are added, with their positions guided by the Data Worth analysis capabilities of PYEMU. The first phase of PEST++, with PYEMU guidance, followed by addition of monitoring wells provided an initial source location and identified four additional drilling locations. The second phase confirmed the source location, but the estimated hydraulic conductivity field and the Darcy flux were too far from the measured values. The mismatch led to a revised conceptual site model that included two distinct zones, each with a plume emanating from a separate source. A third inverse modelling phase was conducted with the revised site conceptual model. Finally, the source location was compared to results from a Geoprobe@ MiHPT campaign and historical records, confirming both source locations. By merging measurement and modeling in a coupled, iterative framework, two contaminant sources were located through only two drilling campaigns while also reforming the conceptual model of the site. © 2021 The Authors
dc.language.isoENen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subject.enContaminant source localization
dc.subject.enIterative strategy
dc.subject.enGLMA
dc.subject.enData Worth
dc.subject.enContaminated site management
dc.subject.enField estimation
dc.title.enApplication of an iterative source localization strategy at a chlorinated solvent site
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.hydroa.2021.100111en_US
dc.subject.halSciences de l'environnementen_US
bordeaux.journalJournal of Hydrology Xen_US
bordeaux.volume13en_US
bordeaux.hal.laboratoriesEPOC : Environnements et Paléoenvironnements Océaniques et Continentaux - UMR 5805en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionCNRSen_US
bordeaux.teamPROMESSen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.identifierhal-04299576
hal.version1
hal.date.transferred2023-11-22T10:22:27Z
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exporttrue
dc.rights.ccCC BY-NC-NDen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Hydrology%20X&rft.date=2021-11-26&rft.volume=13&rft.au=ESSOUAYED,%20Elyess&FERREE,%20T.&COHEN,%20Gregory&GUISERIX,%20N.&ATTEIA,%20Olivier&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée