Applications of machine learning in supercritical fluids research
hal.structure.identifier | Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB] | |
dc.contributor.author | ROACH, Lucien | |
hal.structure.identifier | Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences [IMCN] | |
dc.contributor.author | RIGNANESE, Gian-Marco | |
hal.structure.identifier | Institut de Mécanique et d'Ingénierie [I2M] | |
hal.structure.identifier | Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB] | |
dc.contributor.author | ERRIGUIBLE, Arnaud | |
hal.structure.identifier | Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB] | |
dc.contributor.author | AYMONIER, Cyril | |
dc.date.accessioned | 2023-11-20T17:26:34Z | |
dc.date.available | 2023-11-20T17:26:34Z | |
dc.date.issued | 2023 | |
dc.identifier.issn | 0896-8446 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/185878 | |
dc.description.abstractEn | Machine learning has seen increasing implementation as a predictive tool in the chemical and physical sciences in recent years. It offers a route to accelerate the process of scientific discovery through a computational data-driven approach. Whilst machine learning is well established in other fields, such as pharmaceutical research, it is still in its infancy in supercritical fluids research, but will likely accelerate dramatically in coming years. In this review, we present a basic introduction to machine learning and discuss its current uses by supercritical fluids researchers. In particular, we focus on the most common machine learning applications; including: (1) The estimation of the thermodynamic properties of supercritical fluids. (2) The estimation of solubilities, miscibilities, and extraction yields. (3) Chemical reaction optimization. (4) Materials synthesis optimization. (5) Supercritical power systems. (6) Fluid dynamics simulations of supercritical fluids. (7) Molecular simulation of supercritical fluids and (8) Geosequestration of CO2 using supercritical fluids. | |
dc.description.sponsorship | Sels fondus en milieu hydrothermal pour des degrés d'oxydation élevés du Mn(V) - ANR-21-CE50-0021 | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.subject.en | Machine Learning | |
dc.subject.en | Optimization | |
dc.subject.en | Supercritical Fluids | |
dc.subject.en | Data Intensive Computing | |
dc.subject.en | Regression | |
dc.title.en | Applications of machine learning in supercritical fluids research | |
dc.type | Article de revue | |
dc.type | Article de synthèse | |
dc.identifier.doi | 10.1016/j.supflu.2023.106051 | |
dc.subject.hal | Chimie/Chemo-informatique | |
dc.subject.hal | Informatique [cs]/Apprentissage [cs.LG] | |
dc.subject.hal | Informatique [cs]/Modélisation et simulation | |
dc.subject.hal | Physique [physics]/Mécanique [physics]/Mécanique des fluides [physics.class-ph] | |
bordeaux.journal | Journal of Supercritical Fluids | |
bordeaux.page | 106051 | |
bordeaux.volume | 202 | |
bordeaux.hal.laboratories | Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB) - UMR 5026 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-04187846 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-04187846v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Supercritical%20Fluids&rft.date=2023&rft.volume=202&rft.spage=106051&rft.epage=106051&rft.eissn=0896-8446&rft.issn=0896-8446&rft.au=ROACH,%20Lucien&RIGNANESE,%20Gian-Marco&ERRIGUIBLE,%20Arnaud&AYMONIER,%20Cyril&rft.genre=article&unknown |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |