Mostrar el registro sencillo del ítem

dc.rights.licenseopenen_US
dc.contributor.authorOMAR, Mahmoud Mohamed
dc.contributor.authorLAPRISE-PELLETIER, Myriam
dc.contributor.authorLEMAY, Sophie
dc.contributor.authorLAGUEUX, Jean
hal.structure.identifierEnvironnements et Paléoenvironnements OCéaniques [EPOC]
dc.contributor.authorTUDURI, Ludovic
dc.contributor.authorFORTIN, Marc-André
dc.date.accessioned2023-11-20T10:50:53Z
dc.date.available2023-11-20T10:50:53Z
dc.date.issued2021-09-10
dc.identifier.issn0168-3659en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/184845
dc.description.abstractEnDiffusion cells are routinely used in pharmacology to measure the permeation of pharmaceutical compounds and contaminants across membranes (biological or synthetic). They can also be used to study drug release from excipients. The device is made of a donor (DC) and an acceptor (AC) compartment, separated by a membrane. Usually, permeation of molecules across membranes is measured by sampling from the AC at different time points. However, this process disturbs the equilibrium of the cell. Furthermore, analytical techniques used in association with diffusion cells sometimes lack either accuracy, sensitivity, or both. This work reports on the development of nuclear imaging – compatible diffusion cells. The cell is made of a polymer transparent to high-energy photons typically detected in positron emission tomography (PET). It was tested in a finite-dose set-up experiment with a pre-clinical PET system. Porous cellulose membranes (3.5, 25 and 300 kDa), a common excipient in pharmacology, as well as for dialysis membranes, were used as test membranes. The radioisotope 89Zr chelated with deferoxamine B (DFO; 0.65 kDa), was used as an imaging probe (7–10 MBq; 0.2–0.3 nMol 89Zr-DFO). In medicine, DFO is also commonly used for iron removal treatments and pharmacological formulations often require the association of this molecule with cellulose. Permeation profiles were obtained by measuring the radioactivity in the DC and AC for up to 2 weeks. The kinetic profiles were used to extract lag time, influx, and diffusion coefficients of DFO across porous cellulose membranes. A sensitivity threshold of 0.005 MBq, or 3.4 fmol of 89Zr-DFO, was revealed. The lag time to permeation (τ) measured in the AC compartment, was found to be 1.33, 0.5, and 0.19 h with 3.5, 25, and 300 kDa membranes, respectively. Diffusion coefficients of 3.65 × 10−6, 8.33 × 10−6, and 4.74 × 10−5 cm2 h−1 where revealed, with maximal pseudo steady-state influx values (Jpss) of 6.55 × 10−6, 1.76 × 10−5, and 1.29 × 10−5 nmol cm−2 h−1. This study confirms the potential of the technology for monitoring molecular diffusion and release processes at low concentrations, high sensitivities, in real time and in a visual manner. © 2021 Elsevier B.V.
dc.language.isoENen_US
dc.subject.enAmines
dc.subject.enAnalytic Method
dc.subject.enArticle
dc.subject.enCell-Be
dc.subject.enCells
dc.subject.enCellulose
dc.subject.enChelation
dc.subject.enControlled Drug Delivery
dc.subject.enControlled Study
dc.subject.enCytology
dc.subject.enDeferoxamine
dc.subject.enDialysis Membranes
dc.subject.enDiffusion Cells
dc.subject.enDiffusion Coefficient
dc.subject.enDiffusion Measurements
dc.subject.enDrug Release
dc.subject.enEmission Tomography
dc.subject.enExcipient
dc.subject.enHemodialysis
dc.subject.enIron
dc.subject.enKinetic Parameters
dc.subject.enMathematical Model
dc.subject.enMembrane Permeability
dc.subject.enMembrane Transport
dc.subject.enMolecular Biology
dc.subject.enMolecular Interaction
dc.subject.enMolecular Release
dc.subject.enMolecules
dc.subject.enNuclear Imaging
dc.subject.enPartition Coefficient
dc.subject.enPermeation Measurements
dc.subject.enPharmacokinetic Parameters
dc.subject.enPhoton
dc.subject.enPolymer Membrane
dc.subject.enPositron Annihilation Spectroscopy
dc.subject.enPositron Emission Tomography
dc.subject.enPositrons
dc.subject.enRadioactivity
dc.subject.enRadioisotopes
dc.subject.enRenal Dialysis
dc.subject.enSteady State
dc.subject.enTargeted Drug Delivery
dc.subject.enTissue Distribution
dc.subject.enZirconium
dc.title.enA diffusion cell adapted to nuclear imaging instruments for the measurement of molecular release and pharmacokinetics across membranes
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.jconrel.2021.07.013en_US
dc.subject.halSciences de l'environnementen_US
bordeaux.journalJournal of Controlled Releaseen_US
bordeaux.page661-675en_US
bordeaux.volume337en_US
bordeaux.hal.laboratoriesEPOC : Environnements et Paléoenvironnements Océaniques et Continentaux - UMR 5805en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionCNRSen_US
bordeaux.teamLPTCen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.identifierhal-04295165
hal.version1
hal.date.transferred2023-11-20T10:50:55Z
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exporttrue
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Controlled%20Release&rft.date=2021-09-10&rft.volume=337&rft.spage=661-675&rft.epage=661-675&rft.eissn=0168-3659&rft.issn=0168-3659&rft.au=OMAR,%20Mahmoud%20Mohamed&LAPRISE-PELLETIER,%20Myriam&LEMAY,%20Sophie&LAGUEUX,%20Jean&TUDURI,%20Ludovic&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem