Automatic selection of latent variables in variational auto-encoders
dc.rights.license | open | en_US |
hal.structure.identifier | Laboratoire de l'intégration, du matériau au système [IMS] | |
dc.contributor.author | JOUFFROY, Emma | |
hal.structure.identifier | Laboratoire de l'intégration, du matériau au système [IMS] | |
dc.contributor.author | GIREMUS, Audrey
IDREF: 163238766 | |
hal.structure.identifier | Laboratoire de l'intégration, du matériau au système [IMS] | |
dc.contributor.author | BERTHOUMIEU, Yannick | |
hal.structure.identifier | Laboratoire de l'intégration, du matériau au système [IMS] | |
dc.contributor.author | BACH, Olivier | |
hal.structure.identifier | Laboratoire de l'intégration, du matériau au système [IMS] | |
dc.contributor.author | HUGGET, Alain | |
dc.date.accessioned | 2023-11-14T10:36:30Z | |
dc.date.available | 2023-11-14T10:36:30Z | |
dc.date.issued | 2022-10-18 | |
dc.date.conference | 2022-08-29 | |
dc.identifier.issn | 2473-2001 | en_US |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/184753 | |
dc.description.abstractEn | Variational auto-encoders (VAEs) are powerful generative neural networks based on latent variables. They aim to capture the distribution of a dataset, by building an informative space composed of a reduced number of variables. However, the size of this latent space is both sensitive and difficult to adjust. Thus, most state-of-the-art architectures experience either dis-entanglement issues, or, at the opposite, posterior collapse. Both phenomena impair the interpretability of the latent variables. In this paper, we propose a variant of the VAE which is able to automatically determine the informative components of the latent space. It consists in augmenting the vanilla VAE with auxiliary variables and defining a hierarchical model which favors that only a subset of the latent variables are used for the encoding. We refer to it as NGVAE. We compare its performance with other auto-encoder based architectures. | |
dc.language.iso | EN | en_US |
dc.subject | Architecture | |
dc.subject | Neural networks | |
dc.subject | Buildings | |
dc.subject | Europe | |
dc.subject | Signal processing | |
dc.subject | Encoding | |
dc.subject | Neural net architecture | |
dc.subject | Deep neural networks | |
dc.subject | Variational inference | |
dc.subject | Generative models | |
dc.subject | Unsupervised models | |
dc.title.en | Automatic selection of latent variables in variational auto-encoders | |
dc.type | Communication dans un congrès | en_US |
dc.identifier.doi | 10.23919/EUSIPCO55093.2022.9909746 | en_US |
dc.subject.hal | Sciences de l'ingénieur [physics] | en_US |
bordeaux.page | 1407-1411 | en_US |
bordeaux.hal.laboratories | IMS : Laboratoire de l'Intégration du Matériau au Système - UMR 5218 | en_US |
bordeaux.institution | Université de Bordeaux | en_US |
bordeaux.institution | Bordeaux INP | en_US |
bordeaux.institution | CNRS | en_US |
bordeaux.conference.title | 2022 30th European Signal Processing Conference (EUSIPCO) | en_US |
bordeaux.country | rs | en_US |
bordeaux.title.proceeding | 2022 30th European Signal Processing Conference (EUSIPCO) | en_US |
bordeaux.team | SIGNAL AND IMAGE PROCESSING | en_US |
bordeaux.conference.city | Belgrade | en_US |
hal.identifier | hal-04284248 | |
hal.version | 1 | |
hal.date.transferred | 2023-11-14T10:36:32Z | |
hal.invited | oui | en_US |
hal.proceedings | oui | en_US |
hal.conference.end | 2022-09-02 | |
hal.popular | non | en_US |
hal.audience | Internationale | en_US |
hal.export | true | |
dc.rights.cc | Pas de Licence CC | en_US |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2022-10-18&rft.spage=1407-1411&rft.epage=1407-1411&rft.eissn=2473-2001&rft.issn=2473-2001&rft.au=JOUFFROY,%20Emma&GIREMUS,%20Audrey&BERTHOUMIEU,%20Yannick&BACH,%20Olivier&HUGGET,%20Alain&rft.genre=unknown |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |