Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorLAVAUD, Laura
dc.contributor.authorBERTIN, Xavier
hal.structure.identifierEnvironnements et Paléoenvironnements OCéaniques [EPOC]
dc.contributor.authorMARTINS, Kevin
dc.contributor.authorPEZERAT, Marc
dc.contributor.authorCOULOMBIER, Thibault
dc.contributor.authorDAUSSE, Denis
dc.date.accessioned2023-11-08T14:54:37Z
dc.date.available2023-11-08T14:54:37Z
dc.date.issued2022-02-17
dc.identifier.issn2169-9011en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/184691
dc.description.abstractEnWhile wave processes on shore platforms have been recently advanced by a number of field-based studies, few attention has been paid to the role of bed roughness on wave dissipation and wave setup dynamics in these environments. This study reports on a new field experiment conducted under storm wave conditions on a gently sloping shore platform which was instrumented from 10 m water depth up to the shoreline. Data analyses are complemented with numerical simulations performed with a 3D fully coupled modeling system using a vortex force formalism to represent the effects of short waves on the mean circulation. An accurate representation of wave dissipation by both depth-induced breaking and bottom friction is found essential to reproduce the transformation of short waves across the platform and the resulting wave setup. Wave energy dissipation by bottom friction is dominant in the subtidal part of the platform and contributes to about 40% of the total wave energy dissipation. The enhanced wave bottom friction on the platform decreases the wave height before breaking, which reduces the contribution of wave forces to the wave setup compared to a smooth bottom (mechanism 1). Conversely, an idealized analysis of the cross-shore momentum balance reveals that the wave-induced circulation increases the wave setup, this process being enhanced on a rough bottom (mechanism 2). The contribution of mechanism 2 increases with the bottom slope, accounting for up to 26% of the wave setup for a 1:20 sloping shore platform, and overcoming mechanism 1.
dc.language.isoENen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.title.enWave Dissipation and Mean Circulation on a Shore Platform Under Storm Wave Conditions
dc.typeArticle de revueen_US
dc.identifier.doi10.1029/2021JF006466en_US
dc.subject.halSciences de l'environnementen_US
bordeaux.journalJournal of Geophysical Researchen_US
bordeaux.volume127en_US
bordeaux.hal.laboratoriesEPOC : Environnements et Paléoenvironnements Océaniques et Continentaux - UMR 5805en_US
bordeaux.issue3en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionCNRSen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exportfalse
dc.rights.ccCC BY-NC-NDen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Geophysical%20Research&rft.date=2022-02-17&rft.volume=127&rft.issue=3&rft.eissn=2169-9011&rft.issn=2169-9011&rft.au=LAVAUD,%20Laura&BERTIN,%20Xavier&MARTINS,%20Kevin&PEZERAT,%20Marc&COULOMBIER,%20Thibault&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée