Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorBOUSSAADA, Zina
hal.structure.identifierLaboratoire de l'intégration, du matériau au système [IMS]
hal.structure.identifierESTIA INSTITUTE OF TECHNOLOGY
dc.contributor.authorREMACI, Ahmed
hal.structure.identifierESTIA INSTITUTE OF TECHNOLOGY
dc.contributor.authorCUREA, Octavian
ORCID: 0000-0002-5030-2088
IDREF: 68259131
hal.structure.identifierESTIA INSTITUTE OF TECHNOLOGY
dc.contributor.authorCAMBLONG, Haritza
dc.contributor.authorBELLAAJ, Najiba
dc.date.accessioned2023-10-16T07:15:39Z
dc.date.available2023-10-16T07:15:39Z
dc.date.conference2017-06-27
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/184406
dc.description.abstractEnThe work presented in this paper focuses on the estimation of the direct solar radiation on a horizontal surface using Nonlinear Autoregressive Exogenous (NARX) neural network model. This study is a part of a research project which consists in supplying a sailboat with electricity using only renewable sources. Therefore the results will be used to estimate the direct solar radiation on a tilted surface and the amount of available power from Photovoltaic in the sailboat. In this paper, the NARX neural network predicts the daily direct solar radiation using two variables: the determinist component of solar radiation and its statistical component. Due the mobility of the sailboat and the difference between the days of the year, the issue of this research is to find the best neural network to be used for the daily direct solar radiation prediction. Using several simulations, the best performance was obtained when the training phase was done periodically.
dc.language.isoENen_US
dc.subject.encloud cover
dc.subject.enArtificial Neural Network
dc.subject.enmathematic model
dc.subject.enEstimation
dc.subject.enstatistical model
dc.title.enPrediction of the Daily Direct Solar Radiation Using Nonlinear Autoregressive Exogenous (NARX) Network Model
dc.typeCommunication dans un congrèsen_US
dc.subject.halPhysique [physics]en_US
bordeaux.hal.laboratoriesESTIA - Rechercheen_US
bordeaux.hal.laboratoriesIMS : Laboratoire de l'Intégration du Matériau au Système - UMR 5218en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionBordeaux Sciences Agroen_US
bordeaux.conference.titleSEEP 2017 - 10th International Conference on Sustainable Energy and Environmental Protectionen_US
bordeaux.countrysien_US
bordeaux.conference.cityBleden_US
bordeaux.import.sourcehal
hal.identifierhal-01631169
hal.version1
hal.invitednonen_US
hal.proceedingsnonen_US
hal.conference.end2017-06-30
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exportfalse
workflow.import.sourcehal
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=BOUSSAADA,%20Zina&REMACI,%20Ahmed&CUREA,%20Octavian&CAMBLONG,%20Haritza&BELLAAJ,%20Najiba&rft.genre=unknown


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée