Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorENGUEHARD, Léa
dc.contributor.authorFALCO, Nicola
hal.structure.identifierEnvironnements et Paléoenvironnements OCéaniques [EPOC]
dc.contributor.authorSCHMUTZ, Myriam
dc.contributor.authorNEWCOMER, Michelle E.
dc.contributor.authorLADAU, Joshua
dc.contributor.authorBROWN, James B.
dc.contributor.authorBOURGEAU-CHAVEZ, Laura
dc.contributor.authorWAINWRIGHT, Haruko M.
dc.date.accessioned2023-06-05T12:35:33Z
dc.date.available2023-06-05T12:35:33Z
dc.date.issued2022-07-08
dc.identifier.issn2072-4292en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/182484
dc.description.abstractEnEcosystems at coastal terrestrial–aquatic interfaces play a significant role in global biogeochemical cycles. In this study, we aimed to characterize coastal wetlands with particular focus on the co-variability between plant dynamics, topography, soil, and other environmental factors. We proposed a functional zonation approach based on machine learning clustering to identify the spatial regions, i.e., zones that capture these co-varied properties. This approach was applied to publicly available datasets along Lake Erie, in the Great Lakes Region. We investigated the heterogeneity of coastal ecosystem structures as a function of along-shore distance and transverse distance, based on the spatial data layers, including topography, wetland vegetation cover, and the time series of Landsat’s enhanced vegetation index (EVI) between 1990 and 2020. Results showed that the topographic metrics (elevation and slope), soil texture, and plant productivity influence the spatial distribution of wetland land-covers (emergent and phragmites). These results highlight a natural organization along the transverse axis, where the elevation and the EVI increase further away from the coastline. In addition, the clustering analysis allowed us to identify regions with distinct environmental characteristics, as well as the ones that are more sensitive to interannual lake-level variations.
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subject.enmachine learning
dc.subject.enfunctional zonation
dc.subject.enremote sensing
dc.subject.encoastal wetlands
dc.subject.enplant productivity
dc.subject.enGreat Lakes Region
dc.title.enMachine-Learning Functional Zonation Approach for Characterizing Terrestrial–Aquatic Interfaces: Application to Lake Erie
dc.typeArticle de revueen_US
dc.identifier.doi10.3390/rs14143285en_US
dc.subject.halSciences de l'environnementen_US
bordeaux.journalRemote Sensingen_US
bordeaux.volume14en_US
bordeaux.hal.laboratoriesEPOC : Environnements et Paléoenvironnements Océaniques et Continentaux - UMR 5805en_US
bordeaux.issue14en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionCNRSen_US
bordeaux.teamPROMESSen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.identifierhal-04117303
hal.version1
hal.date.transferred2023-06-05T12:35:44Z
hal.exporttrue
dc.rights.ccCC BYen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Remote%20Sensing&rft.date=2022-07-08&rft.volume=14&rft.issue=14&rft.eissn=2072-4292&rft.issn=2072-4292&rft.au=ENGUEHARD,%20L%C3%A9a&FALCO,%20Nicola&SCHMUTZ,%20Myriam&NEWCOMER,%20Michelle%20E.&LADAU,%20Joshua&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée