Afficher la notice abrégée

hal.structure.identifierDe la Préhistoire à l'Actuel : Culture, Environnement et Anthropologie [PACEA]
dc.contributor.authorBOSQ, Mathieu
hal.structure.identifierUniversität Heidelberg [Heidelberg] = Heidelberg University
dc.contributor.authorKREUTZER, Sebastian
hal.structure.identifierDe la Préhistoire à l'Actuel : Culture, Environnement et Anthropologie [PACEA]
dc.contributor.authorBERTRAN, Pascal
hal.structure.identifierArchéosciences Bordeaux
hal.structure.identifierGéosciences Rennes [GR]
dc.contributor.authorLANOS, Philippe
hal.structure.identifierGéosciences Rennes [GR]
hal.structure.identifierArchéosciences Bordeaux
dc.contributor.authorDUFRESNE, Philippe
hal.structure.identifierInstitute of Earth Surface Dynamics
dc.contributor.authorSCHMIDT, Christoph
dc.date.issued2023
dc.identifier.issn1866-3508
dc.description.abstractEnAbstract. During the last glacial period, the climate shift to cold conditions associated with changes in atmospheric circulation and vegetation cover resulted in the development of large aeolian systems in Europe. On a regional scale, many factors may have influenced dust dynamics, such as the latitudinal difference between the various aeolian systems and the variability of the sources of wind-transported particles. Therefore, the assumption that the timing of aeolian deposition is strictly synchronous in Europe does not seem to be the most plausible hypothesis and needs to be evaluated. To test this assumption, the chronology of loess deposition in different European regions was investigated by studying 93 luminescence-dated loess-palaeosol sequences with their data recalculated and compiled in a single CSV file: the ChronoLoess database. Our study shows that the two major aeolian systems, the Northern European Loess Belt (NELB) on the one hand and the systems associated with the rivers draining the Alpine Ice Sheet on the other hand, developed asynchronously. The significant deposition started at about 32 ka for the NELB vs 40 ka for the perialpine loess and peaked about two millennia later for the former (21.8 ka vs 23.9 ka, respectively). This shift resulted mainly from the time lag between the maxima of the Alpine and Fennoscandian ice sheets, which acted as the primary sources of fine-grained particles through glacial abrasion. The major geomorphic changes that resulted from the development and decay of the Fennoscandian and British-Irish ice sheets also played an important role. Particularly, ice sheet coalescence during the LGM diverted meltwater fluxes through the Manche River and provided vast amounts of glacial particles available for deflation in the western NELB. The period during which the maximum Mass Accumulation Rate was reached for each loess-palaeosol sequence is relatively homogeneous in the NELB and ranges from 30 ka to 19 ka, whereas it is more scattered in the perialpine systems (>60 ka to 14 ka). This probably resulted from a combination of factors, including the asynchrony of maximum valley glacier advances and local geomorphic factors.
dc.description.sponsorshipUsing the world in ancient societies : processes and forms of appropriation of space in Long Time - ANR-10-LABX-0052
dc.language.isoen
dc.publisherCopernicus Publications
dc.rights.urihttp://creativecommons.org/licenses/by/
dc.subject.enGeochronology
dc.subject.enLoess deposits
dc.subject.enLuminescence dating
dc.title.enLast Glacial loess in Europe: luminescence database and chronology of deposition
dc.typeArticle de revue
dc.identifier.doi10.5194/essd-2023-105
dc.subject.halPlanète et Univers [physics]/Sciences de la Terre
dc.description.sponsorshipEuropeCREDit - Chronological REference Datasets and Sites (CREDit) towards improved accuracy and precision in luminescence-based chronologies
bordeaux.journalEarth System Science Data
bordeaux.journalEarth System Science Data
bordeaux.volumepreprint
bordeaux.peerReviewedoui
hal.identifierhal-04115632
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-04115632v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Earth%20System%20Science%20Data&Earth%20System%20Science%20Data&rft.date=2023&rft.volume=preprint&rft.eissn=1866-3508&rft.issn=1866-3508&rft.au=BOSQ,%20Mathieu&KREUTZER,%20Sebastian&BERTRAN,%20Pascal&LANOS,%20Philippe&DUFRESNE,%20Philippe&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée