Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorPRYET, Alexandre
dc.contributor.authorMATRAN, Pierre
dc.contributor.authorCOUSQUER, Yohann
dc.contributor.authorROUBINET, Delphine
dc.date.accessioned2023-05-17T07:37:22Z
dc.date.available2023-05-17T07:37:22Z
dc.date.issued2022-08-25
dc.identifier.issn2296-6463en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/182177
dc.description.abstractEnThe simulation of concentration values and use of such data for history-matching is often impeded by the computation time of groundwater transport models based on the resolution of the advection-dispersion equation. This is unfortunate because such data are often rich in information and the prediction of concentration values is of great interest for decision making. Particle tracking can be used as an efficient alternative under a series of simplifying assumptions, which are often reasonable at groundwater sinks (wells and drains). Our approach consists of seeding particles around a sink and tracking particles backward, up to the source boundary condition, such as a contaminated stream. This particle tracking approach allows the use of parameter estimation and optimization methods requiring numerous model calls. We present a Python module facilitating the pre- and post-processing operations of a modeling workflow based on the widely used USGS MODFLOW6 and MODPATH7 programs. The module handles particle seeding around the sink and estimation of the mixing ratio of water withdrawn from the sink. This ratio is computed with a mixing law from the particle endpoints, accounting for particle velocities and mixing in the source model cells. We investigate the best practice to obtain robust derivatives with this approach, which is a benefit for the screening methods based on linear analysis. We illustrate the interest of the approach with a real world case study, considering a drinking water well field vulnerable to a contaminated stream. The configuration is typical of many other drinking water production sites. The modeling workflow is fully script-based to make the approach easily reproducible in similar cases.
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subject.enparticle-tracking
dc.subject.enadvective transport
dc.subject.ensteady state
dc.subject.ensurrogate model
dc.subject.engroundwater contamination
dc.subject.enstream-aquifer flow
dc.subject.enwell vulnerability
dc.title.enParticle tracking as a vulnerability assessment tool for drinking water production
dc.typeArticle de revueen_US
dc.identifier.doi10.3389/feart.2022.975156en_US
dc.subject.halSciences de l'environnementen_US
bordeaux.journalFrontiers in Earth Scienceen_US
bordeaux.volume10en_US
bordeaux.hal.laboratoriesEPOC : Environnements et Paléoenvironnements Océaniques et Continentaux - UMR 5805en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionCNRSen_US
bordeaux.teamPALEOen_US
bordeaux.teamPROMESSen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.exportfalse
dc.rights.ccCC BYen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Frontiers%20in%20Earth%20Science&rft.date=2022-08-25&rft.volume=10&rft.eissn=2296-6463&rft.issn=2296-6463&rft.au=PRYET,%20Alexandre&MATRAN,%20Pierre&COUSQUER,%20Yohann&ROUBINET,%20Delphine&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail
Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée