Afficher la notice abrégée

hal.structure.identifierAstrophysique Relativiste Théories Expériences Métrologie Instrumentation Signaux [ARTEMIS]
dc.contributor.authorCHAIBI, Walid
hal.structure.identifierSystèmes de Référence Temps Espace [SYRTE]
dc.contributor.authorGEIGER, Remi
hal.structure.identifierlp2n-02,lp2n-11
dc.contributor.authorCANUEL, Benjamin
hal.structure.identifierlp2n-02,lp2n-11
dc.contributor.authorBERTOLDI, Andrea
hal.structure.identifierSystèmes de Référence Temps Espace [SYRTE]
dc.contributor.authorLANDRAGIN, Arnaud
hal.structure.identifierlp2n-02,lp2n-11
dc.contributor.authorBOUYER, Philippe
dc.date.accessioned2023-05-12T10:58:30Z
dc.date.available2023-05-12T10:58:30Z
dc.date.issued2016-01-15
dc.identifier.issn1550-7998
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/181979
dc.description.abstractEnWe propose a new detection strategy for gravitational waves (GWs) below few Hertz based on a correlated array of atom interferometers (AIs).Our proposal allows to reject the Newtonian Noise (NN) which limits all ground based GW detectors below few Hertz, including previous atom interferometry-based concepts.Using an array of long baseline AI gradiometers yields several estimations of the NN, whose effect can thus be reduced via statistical averaging.Considering the km baseline of current optical detectors, a NN rejection of factor 2 could be achieved, and tested with existing AI array geometries.Exploiting the correlation properties of the gravity acceleration noise, we show that a 10-fold or more NN rejection is possible with a dedicated configuration.Considering a conservative NN model and the current developments in cold atom technology, we show that strain sensitivities below $1\times 10^{-19}/\sqrt{Hz}$ in the $ 0.3-3 \ Hz$ frequency band can be within reach, with a peak sensitivity of $3\times 10^{-23} /\sqrt{Hz}$ at $2 \ Hz$.Our proposed configuration could extend the observation window of current detectors by a decade and fill the gap betweenground-based and space-based instruments.
dc.language.isoen
dc.publisherAmerican Physical Society
dc.title.enLow Frequency Gravitational Wave Detection With Ground Based Atom Interferometer Arrays
dc.typeArticle de revue
dc.identifier.doi10.1103/PhysRevD.93.021101
dc.subject.halPhysique [physics]/Physique [physics]/Physique Atomique [physics.atom-ph]
dc.subject.halPhysique [physics]/Physique [physics]/Instrumentations et Détecteurs [physics.ins-det]
dc.subject.halPhysique [physics]/Relativité Générale et Cosmologie Quantique [gr-qc]
dc.identifier.arxiv1601.00417
bordeaux.journalPhysical Review D
bordeaux.hal.laboratoriesLaboratoire Photonique, Numérique et Nanosciences (LP2N) - UMR 5298*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01233030
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01233030v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Physical%20Review%20D&rft.date=2016-01-15&rft.eissn=1550-7998&rft.issn=1550-7998&rft.au=CHAIBI,%20Walid&GEIGER,%20Remi&CANUEL,%20Benjamin&BERTOLDI,%20Andrea&LANDRAGIN,%20Arnaud&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée