Optical nanoscopy with excited state saturation at liquid helium temperatures
hal.structure.identifier | Laboratoire Photonique, Numérique et Nanosciences [LP2N] | |
dc.contributor.author | YANG, Bin | |
hal.structure.identifier | Laboratoire Photonique, Numérique et Nanosciences [LP2N] | |
dc.contributor.author | TREBBIA, Jean-Baptiste | |
hal.structure.identifier | Laboratoire Photonique, Numérique et Nanosciences [LP2N] | |
dc.contributor.author | BABY, Reenu | |
hal.structure.identifier | Laboratoire Photonique, Numérique et Nanosciences [LP2N] | |
dc.contributor.author | TAMARAT, Philippe | |
hal.structure.identifier | Laboratoire Photonique, Numérique et Nanosciences [LP2N] | |
dc.contributor.author | LOUNIS, Brahim | |
dc.date.accessioned | 2023-05-12T10:55:50Z | |
dc.date.available | 2023-05-12T10:55:50Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 1749-4885 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/181941 | |
dc.description.abstractEn | Optical resolution of solid-state single quantum emitters at the nanometre scale is a challenging step towards the control of delocalized states formed by strongly and coherently interacting emitters. We have developed a simple super-resolution optical microscopy method operating at cryogenic temperatures, which is based on optical saturation of the excited state of single fluorescent molecules with a doughnut-shaped beam. Sub-10 nm resolution is achieved with extremely low excitation intensities, a million times lower than those used in room-temperature stimulated emission depletion microscopy. Compared with super-localization approaches, our technique offers a unique opportunity to super-resolve single molecules with overlapping optical resonance frequencies and paves the way to the study of coherent interactions between single emitters and to the manipulation of their degree of entanglement. | |
dc.language.iso | en | |
dc.publisher | Nature Publishing Group | |
dc.title.en | Optical nanoscopy with excited state saturation at liquid helium temperatures | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1038/nphoton.2015.152 | |
dc.subject.hal | Physique [physics] | |
bordeaux.journal | Nature Photonics | |
bordeaux.hal.laboratories | Laboratoire Photonique, Numérique et Nanosciences (LP2N) - UMR 5298 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01359111 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01359111v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Nature%20Photonics&rft.date=2015&rft.eissn=1749-4885&rft.issn=1749-4885&rft.au=YANG,%20Bin&TREBBIA,%20Jean-Baptiste&BABY,%20Reenu&TAMARAT,%20Philippe&LOUNIS,%20Brahim&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |