Afficher la notice abrégée

hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorFAGGIANI, Rémi
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorYANG, Jianji
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorLALANNE, Philippe
dc.date.accessioned2023-05-12T10:54:58Z
dc.date.available2023-05-12T10:54:58Z
dc.date.issued2015
dc.identifier.issn2330-4022
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/181930
dc.description.abstractEnBy placing a quantum emitter in the mouths of nanogaps consisting of two metal nanoparticles nearly in contact, significant increases in emission rate are obtained. This mechanism is central in the design of modern plasmonic nanoantennas. However, due to the lack of general knowledge on the balance between the different decay rates in nanogaps (emission, quenching, and metal absorption), the design of light-emitting devices based on nanogaps is performed in a rather hazardous fashion; general intuitive recipes do not presently exist. With accurate and simple closed-form expressions for the quenching rate and the decay rate into gap plasmons, we provide a comprehensive analysis of nanogap light-emitting devices in the limit of small gap thickness. We disclose that the total decay rate in gap plasmons can largely overcome quenching for specifically selected metallic and insulator materials, regardless of the gap size. To confront these theoretical predictions, we provide a comprehensive numerical analysis of nanocube-type antennas in the limit of small gap thickness and further provide upper bounds for the photon-radiation efficiency.
dc.language.isoen
dc.publisherAmerican Chemical Society
dc.title.enQuenching, Plasmonic, and Radiative Decays in Nanogap Emitting Devices
dc.typeArticle de revue
dc.identifier.doi10.1021/acsphotonics.5b00424
dc.subject.halPhysique [physics]/Physique [physics]/Optique [physics.optics]
dc.identifier.arxiv1510.06693
bordeaux.journalACS photonics
bordeaux.page1739−1744
bordeaux.volume2
bordeaux.hal.laboratoriesLaboratoire Photonique, Numérique et Nanosciences (LP2N) - UMR 5298*
bordeaux.issue12
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01381391
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01381391v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=ACS%20photonics&rft.date=2015&rft.volume=2&rft.issue=12&rft.spage=1739%E2%88%921744&rft.epage=1739%E2%88%921744&rft.eissn=2330-4022&rft.issn=2330-4022&rft.au=FAGGIANI,%20R%C3%A9mi&YANG,%20Jianji&LALANNE,%20Philippe&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée