Afficher la notice abrégée

hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorBARRETT, Brynle
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorANTONI-MICOLLIER, Laura
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorCHICHET, Laure
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorBATTELIER, Baptiste
hal.structure.identifierCentre National d'Études Spatiales [Toulouse] [CNES]
dc.contributor.authorLÉVÈQUE, Thomas
hal.structure.identifierSystèmes de Référence Temps Espace [SYRTE]
dc.contributor.authorLANDRAGIN, Arnaud
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorBOUYER, Philippe
dc.date.accessioned2023-05-12T10:53:44Z
dc.date.available2023-05-12T10:53:44Z
dc.date.issued2016-12-12
dc.identifier.issn2041-1723
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/181890
dc.description.abstractEnQuantum technology based on cold-atom interferometers is showing great promise for fields such as inertial sensing and fundamental physics. However, the finite free-fall time of the atoms limits the precision achievable on Earth, while in space interrogation times of many seconds will lead to unprecedented sensitivity. Here we realize simultaneous 87 Rb– 39 K interferometers capable of operating in the weightless environment produced during parabolic flight. Large vibration levels (10 À 2 g Hz À 1/2), variations in acceleration (0–1.8 g) and rotation rates (5° s À 1) onboard the aircraft present significant challenges. We demonstrate the capability of our correlated quantum system by measuring the Eötvös parameter with systematic-limited uncertainties of 1.1 Â 10 À 3 and 3.0 Â 10 À 4 during standard-and microgravity, respectively. This constitutes a fundamental test of the equivalence principle using quantum sensors in a free-falling vehicle. Our results are applicable to inertial navigation, and can be extended to the trajectory of a satellite for future space missions.
dc.language.isoen
dc.publisherNature Publishing Group
dc.rights.urihttp://creativecommons.org/licenses/by/
dc.title.enDual matter-wave inertial sensors in weightlessness
dc.typeArticle de revue
dc.identifier.doi10.1038/ncomms13786
dc.subject.halSciences de l'ingénieur [physics]/Micro et nanotechnologies/Microélectronique
dc.identifier.arxiv1609.03598
bordeaux.journalNature Communications
bordeaux.page13786
bordeaux.volume7
bordeaux.hal.laboratoriesLaboratoire Photonique, Numérique et Nanosciences (LP2N) - UMR 5298*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01429804
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01429804v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Nature%20Communications&rft.date=2016-12-12&rft.volume=7&rft.spage=13786&rft.epage=13786&rft.eissn=2041-1723&rft.issn=2041-1723&rft.au=BARRETT,%20Brynle&ANTONI-MICOLLIER,%20Laura&CHICHET,%20Laure&BATTELIER,%20Baptiste&L%C3%89V%C3%88QUE,%20Thomas&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée