Afficher la notice abrégée

hal.structure.identifierInstitut des Fonctions Optiques pour les Technologies de l'informatiON [FOTON]
dc.contributor.authorEVEN, Jacky
hal.structure.identifierLos Alamos National Laboratory [LANL]
dc.contributor.authorTSAI, Hsinhan
hal.structure.identifierLos Alamos National Laboratory [LANL]
dc.contributor.authorNIE, Wanyi
hal.structure.identifierLos Alamos National Laboratory [LANL]
dc.contributor.authorBLANCON, Jean-Christophe
hal.structure.identifierLos Alamos National Laboratory [LANL]
dc.contributor.authorNEUKIRCH, Amanda
hal.structure.identifierInstitut des Fonctions Optiques pour les Technologies de l'informatiON [FOTON]
dc.contributor.authorPEDESSEAU, Laurent
hal.structure.identifierInstitut des Fonctions Optiques pour les Technologies de l'informatiON [FOTON]
dc.contributor.authorBOYER-RICHARD, Soline
hal.structure.identifierInstitut des Sciences Chimiques de Rennes [ISCR]
dc.contributor.authorTRAORÉ, Boubacar
hal.structure.identifierInstitut des Sciences Chimiques de Rennes [ISCR]
dc.contributor.authorKEPENEKIAN, Mikael
hal.structure.identifierInstitut des Fonctions Optiques pour les Technologies de l'informatiON [FOTON]
dc.contributor.authorJANCU, Jean-Marc
hal.structure.identifierNorthwestern University [Evanston]
dc.contributor.authorSTOUMPOS, Constantinos
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorFU, Ming
hal.structure.identifierCity University of Hong Kong [Hong Kong] [CUHK]
dc.contributor.authorHUANG, He
hal.structure.identifierCity University of Hong Kong [Hong Kong] [CUHK]
dc.contributor.authorROGACH, Andrey
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorTAMARAT, Philippe
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorLOUNIS, Brahim
hal.structure.identifierBrookhaven National Laboratory [Upton, NY] [BNL]
dc.contributor.authorSFEIR, Matthew
hal.structure.identifierLos Alamos National Laboratory [LANL]
dc.contributor.authorCROCHET, Jared
hal.structure.identifierLos Alamos National Laboratory [LANL]
dc.contributor.authorTRETIAK, Sergei
hal.structure.identifierNorthwestern University [Evanston]
dc.contributor.authorKANATZIDIS, Mercouri
hal.structure.identifierLos Alamos National Laboratory [LANL]
dc.contributor.authorMOHITE, Aditya
hal.structure.identifierInstitut des Sciences Chimiques de Rennes [ISCR]
dc.contributor.authorKATAN, Claudine
dc.date.accessioned2023-05-12T10:53:13Z
dc.date.available2023-05-12T10:53:13Z
dc.date.conference2017-05-09
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/181879
dc.description.abstractEnIn the past five years, solution-processed organometallic perovskite based solar cells have emerged as a promising thin-film photovoltaic technology. Presently, the intended optoelectronic applications of this class of materials are in the realm of conventional semiconductors. Meanwhile, in this new family of semiconductors, the spin-orbit coupling is giant and shows up in the conduction band, the band gap is direct with the critical wavevector located at one of the edges of the reference Brillouin zone, and all these distinctive features including lattice strain deserve a specific theoretical framework. Then, the electronic band structure can be modeled using either Density Functional Theory calculations or empirical methods such as the tight-binding model and the multiband k.p method provided that accurate descriptions of symmetry properties are proposed. Among others, excitonic effects play a crucial role in ensuring device efficiencies. For instance, in 3D halide-based hybrid perovskites, the strong reduction of the exciton binding energy at room temperature is essential for the operation of photovoltaic devices. The exciton fine structure also plays an important role for the emission properties of colloidal halide perovskite nanostructures. Related 2D Ruddlesden-Popper phases, composed of perovskites layers sandwiched between two layers of large organic cations, have recently demonstrated improved photostability under standard illumination as well as humidity resistance over 2000 hours, affording a conversion efficiency of 12.5 %. In this case, intrinsic quantum and dielectric carrier confinements are afforded by the organic inner barriers, which leads to a stable Wannier exciton at room temperature. However, device efficiencies are essentially related to extremely efficient internal exciton dissociation through edge states in layered 2D Ruddlesden-Popper perovskites, as shown from the investigation of both thin films and small single crystals.
dc.language.isoen
dc.rights.urihttp://creativecommons.org/licenses/by/
dc.title.enElectronic properties of bulk 3D, 2D Ruddlesden-Popper phases and colloidal quantum dots of halide perovskite semiconductors: recent results(Keynote Speaker)
dc.typeCommunication dans un congrès avec actes
dc.subject.halPhysique [physics]
dc.subject.halChimie
dc.description.sponsorshipEuropeNew technological advances for the third generation of Solar cells
bordeaux.hal.laboratoriesLaboratoire Photonique, Numérique et Nanosciences (LP2N) - UMR 5298*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionCNRS
bordeaux.countryFR
bordeaux.title.proceeding3è Journées Pérovskites Hybrides (JPH 2017)
bordeaux.conference.cityAngers
bordeaux.peerReviewednon
hal.identifierhal-01533009
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01533009v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=EVEN,%20Jacky&TSAI,%20Hsinhan&NIE,%20Wanyi&BLANCON,%20Jean-Christophe&NEUKIRCH,%20Amanda&rft.genre=proceeding


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée