Afficher la notice abrégée

hal.structure.identifierlp2n-04,lp2n-12
dc.contributor.authorGODIN, Antoine
dc.contributor.authorVARELA, Juan
hal.structure.identifierlp2n-01,lp2n-12
dc.contributor.authorGAO, Zhenghong
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorDANNÉ, Noémie
dc.contributor.authorDUPUIS, Julien P.
hal.structure.identifierlp2n-01,lp2n-12
dc.contributor.authorLOUNIS, Brahim
dc.contributor.authorGROC, Laurent
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorCOGNET, Laurent
dc.date.accessioned2023-05-12T10:52:05Z
dc.date.available2023-05-12T10:52:05Z
dc.date.issued2016-11-21
dc.identifier.issn1748-3387
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/181851
dc.description.abstractEnThe brain is a dynamic structure in which the extracellular space (ECS) takes up 14 almost a quarter of its volume 1-2. Signalling molecules, neurotransmitters and nutrients 15 transit via the ECS which constitutes a key microenvironment for cellular communication 3 16 and clearance of toxic metabolites. The ECS spatial organization varies during sleep 4 , 17 development 5 , aging 6 and is likely altered in neuropsychiatric and degenerative diseases 7 , 18 as inferred from electron microscopy 8-9 and macroscopic biophysical investigations 2,10. 19 Here we show an approach to directly observe the local ECS structures and rheology in a 20 brain tissue using super-resolution imaging. We inject single-walled carbon nanotubes 21 (SWCNTs) in rat cerebroventricles and follow individual nanotubes near-IR emission for 22 tens of minutes in acute slices as they diffuse inside the ECS. Because of the interplay 23 between the nanotube geometry and the ECS local environment, we can extract 24 information about the ECS dimension and local viscosity. We find a striking diversity of 25 ECS dimensions down to 40 nm, and as well as of local viscosity values. Moreover, by 26
dc.language.isoen
dc.publisherNature Publishing Group
dc.title.enSingle-nanotube tracking reveals the nanoscale organization of the extracellular space in the live brain
dc.typeArticle de revue
dc.identifier.doi10.1038/NNANO.2016.248
dc.subject.halPhysique [physics]/Physique [physics]/Optique [physics.optics]
dc.subject.halPhysique [physics]/Physique [physics]/Biophysique [physics.bio-ph]
dc.subject.halSciences du Vivant [q-bio]/Neurosciences [q-bio.NC]
bordeaux.journalNature Nanotechnology
bordeaux.page238 - 243
bordeaux.volume12
bordeaux.hal.laboratoriesLaboratoire Photonique, Numérique et Nanosciences (LP2N) - UMR 5298*
bordeaux.issue3
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01630795
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01630795v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Nature%20Nanotechnology&rft.date=2016-11-21&rft.volume=12&rft.issue=3&rft.spage=238%20-%20243&rft.epage=238%20-%20243&rft.eissn=1748-3387&rft.issn=1748-3387&rft.au=GODIN,%20Antoine&VARELA,%20Juan&GAO,%20Zhenghong&DANN%C3%89,%20No%C3%A9mie&DUPUIS,%20Julien%20P.&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée