Mostrar el registro sencillo del ítem

hal.structure.identifierModelling and Analysis for Medical and Biological Applications [MAMBA]
hal.structure.identifierSImulations en Médecine, BIOtechnologie et ToXicologie de systèmes multicellulaires [SIMBIOTX ]
dc.contributor.authorLIEDEKERKE, Paul
hal.structure.identifierInterdisciplinary Centre for Bioinformatics [Leipzig] [IZBI]
dc.contributor.authorNEITSCH, Johannes
hal.structure.identifierInterdisciplinary Centre for Bioinformatics [Leipzig] [IZBI]
dc.contributor.authorJOHANN, Tim
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorALESSANDRI, Kévin
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorNASSOY, Pierre
hal.structure.identifierModelling and Analysis for Medical and Biological Applications [MAMBA]
hal.structure.identifierSImulations en Médecine, BIOtechnologie et ToXicologie de systèmes multicellulaires [SIMBIOTX ]
dc.contributor.authorDRASDO, Dirk
dc.date.accessioned2023-05-12T10:48:31Z
dc.date.available2023-05-12T10:48:31Z
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/181768
dc.description.abstractEnModel simulations indicate that the response of growing cell populations on mechanical stress follows the same functional relationship and is predictable over different cell lines and growth conditions despite the response curves look largely different. We develop a hybrid model strategy in which cells are represented by coarse-grained individual units calibrated with a high resolution cell model and parameterized measurable biophysical and cell-biological parameters. Cell cycle progression in our model is controlled by volumetric strain, the latter being derived from a bio-mechanical relation between applied pressure and cell compressibility. After parameter calibration from experiments with mouse colon carcinoma cells growing against the resistance of an elastic alginate capsule, the model adequately predicts the growth curve in i) soft and rigid capsules, ii) in different experimental conditions where the mechanical stress is generated by osmosis via a high molecular weight dextran solution, and iii) for other cell types with different growth kinetics. Our model simulation results suggest that the growth response of cell population upon externally applied mechanical stress is the same, as it can be quantitatively predicted using the same growth progression function.
dc.language.isoen
dc.title.enQuantitative agent-based modeling reveals mechanical stress response of growing tumor spheroids is predictable over various growth conditions and cell lines
dc.typeDocument de travail - Pré-publication
dc.subject.halPhysique [physics]/Physique [physics]/Biophysique [physics.bio-ph]
dc.subject.halSciences du Vivant [q-bio]/Cancer
dc.subject.halPhysique [physics]/Mécanique [physics]
dc.subject.halPhysique [physics]/Mécanique [physics]/Biomécanique [physics.med-ph]
bordeaux.hal.laboratoriesLaboratoire Photonique, Numérique et Nanosciences (LP2N) - UMR 5298*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionCNRS
hal.identifierhal-01956017
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01956017v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=LIEDEKERKE,%20Paul&NEITSCH,%20Johannes&JOHANN,%20Tim&ALESSANDRI,%20K%C3%A9vin&NASSOY,%20Pierre&rft.genre=preprint


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem