Afficher la notice abrégée

dc.contributor.authorHOWL, Richard
dc.contributor.authorVEDRAL, Vlatko
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorNAIK, Devang
dc.contributor.authorCHRISTODOULOU, Marios
hal.structure.identifierCentre de Physique Théorique - UMR 7332 [CPT]
dc.contributor.authorROVELLI, Carlo
dc.contributor.authorIYER, Aditya
dc.date.accessioned2023-05-12T10:41:34Z
dc.date.available2023-05-12T10:41:34Z
dc.date.issued2021
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/181622
dc.description.abstractEnTable-top tests of quantum gravity (QG) have long been thought to be practically impossible. However, remarkably, due to rapid progress in quantum information science (QIS), such tests may soon be achievable. Here, we uncover an exciting new theoretical link between QG and QIS that also leads to a radical new way of testing QG with QIS experiments. Specifically, we find that only a quantum, not classical, theory of gravity can create non-Gaussianity, a QIS resource that is necessary for universal quantum computation, in the quantum field state of matter. This allows for tests based on QIS in which non-Gaussianity in matter is used as a signature of QG. In comparison to previous studies of testing QG with QIS where entanglement is used to witness QG when all other quantum interactions are excluded, our non-Gaussianity witness cannot be created by direct classical gravity interactions, facilitating tests that are not constrained by the existence of such processes. Our new signature of QG also enables tests that are based on just a single rather than multi-partite quantum system, simplifying previously considered experimental setups. We describe a table-top test of QG that uses our non-Gaussianity signature and which is based on just a single quantum system, a Bose-Einstein condensate (BEC), in a single location. In contrast to proposals based on opto-mechanical setups, BECs have already been manipulated into massive non-classical states, aiding the prospect of testing QG in the near future.
dc.language.isoen
dc.subject.eninformation theory: quantum
dc.subject.enquantum gravity
dc.subject.ennon-Gaussianity
dc.subject.enentanglement
dc.subject.enfield theory
dc.subject.ensignature
dc.subject.enqubit
dc.title.enNon-Gaussianity as a signature of a quantum theory of gravity
dc.typeArticle de revue
dc.identifier.doi10.1103/PRXQuantum.2.010325
dc.subject.halPhysique [physics]/Physique [physics]/Physique Générale [physics.gen-ph]
dc.subject.halPhysique [physics]/Relativité Générale et Cosmologie Quantique [gr-qc]
dc.identifier.arxiv2004.01189
bordeaux.journalPRX Quantum
bordeaux.page010325
bordeaux.volume2
bordeaux.hal.laboratoriesLaboratoire Photonique, Numérique et Nanosciences (LP2N) - UMR 5298*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-02550153
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02550153v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=PRX%20Quantum&rft.date=2021&rft.volume=2&rft.spage=010325&rft.epage=010325&rft.au=HOWL,%20Richard&VEDRAL,%20Vlatko&NAIK,%20Devang&CHRISTODOULOU,%20Marios&ROVELLI,%20Carlo&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée