Mostrar el registro sencillo del ítem

dc.contributor.authorURCUN, Stéphane
hal.structure.identifierInstitut de Biomecanique Humaine Georges Charpak
dc.contributor.authorROHAN, Pierre-Yves
hal.structure.identifierInstitut de Biomécanique Humaine Georges Charpak [IBHGC]
dc.contributor.authorSKALLI, Wafa
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorNASSOY, Pierre
hal.structure.identifierUniversity of Luxembourg [Luxembourg]
dc.contributor.authorBORDAS, Stéphane
hal.structure.identifierLaboratoire de Mécanique et Technologie [LMT]
dc.contributor.authorSCIUMÈ, Giuseppe
dc.date.accessioned2023-05-12T10:35:12Z
dc.date.available2023-05-12T10:35:12Z
dc.date.issued2021-07-12
dc.identifier.issn1932-6203
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/181484
dc.description.abstractEnSpheroids encapsulated within alginate capsules are emerging as suitable in vitro tools to investigate the impact of mechanical forces on tumor growth since the internal tumor pressure can be retrieved from the deformation of the capsule. Here we focus on the particular case of Cellular Capsule Technology (CCT). We show in this contribution that a modeling approach accounting for the triphasic nature of the spheroid (extracellular matrix, tumor cells and interstitial fluid) offers a new perspective of analysis revealing that the pressure retrieved experimentally cannot be interpreted as a direct picture of the pressure sustained by the tumor cells and, as such, cannot therefore be used to quantify the critical pressure which induces stress-induced phenotype switch in tumor cells. The proposed multiphase reactive poro-mechanical model was cross-validated. Parameter sensitivity analyses on the digital twin revealed that the main parameters determining the encapsulated growth configuration are different from those driving growth in free condition, confirming that radically different phenomena are at play. Results reported in this contribution support the idea that multiphase reactive poro-mechanics is an exceptional theoretical framework to attain an in-depth understanding of CCT experiments, to confirm their hypotheses and to further improve their design.
dc.language.isoen
dc.publisherPublic Library of Science
dc.title.enDigital twinning of Cellular Capsule Technology: Emerging outcomes from the perspective of porous media mechanics
dc.typeArticle de revue
dc.identifier.doi10.1371/journal.pone.0254512
dc.subject.halMathématiques [math]/Physique mathématique [math-ph]
dc.subject.halSciences du Vivant [q-bio]/Cancer
bordeaux.journalPLoS ONE
bordeaux.pagee0254512
bordeaux.volume16
bordeaux.hal.laboratoriesLaboratoire Photonique, Numérique et Nanosciences (LP2N) - UMR 5298*
bordeaux.issue7
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-03396221
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03396221v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=PLoS%20ONE&rft.date=2021-07-12&rft.volume=16&rft.issue=7&rft.spage=e0254512&rft.epage=e0254512&rft.eissn=1932-6203&rft.issn=1932-6203&rft.au=URCUN,%20St%C3%A9phane&ROHAN,%20Pierre-Yves&SKALLI,%20Wafa&NASSOY,%20Pierre&BORDAS,%20St%C3%A9phane&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem