Afficher la notice abrégée

hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorVEYRON, Romain
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorMANCOIS, Vincent
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorGERENT, Jean-Baptiste
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorBACLET, Guillaume
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorBOUYER, Philippe
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorBERNON, Simon
dc.date.accessioned2023-05-12T10:32:55Z
dc.date.available2023-05-12T10:32:55Z
dc.date.issued2022
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/181448
dc.description.abstractEnThe numerical simulation of multiple scattering in dense ensembles is the mostly adopted solution to predict their complex optical response. While the scalar and vectorial light mediated interactions are accurately taken into account, the computational complexity still limits current simulations to the low saturation regime and ignores the internal structure of atoms. Here, we propose to go beyond these restrictions, at constant computational cost, by describing a multi-level system (MLS) by an effective two-level system (TLS) that best reproduces the coherent and total scattering properties in any saturation regime. The correspondence of our model is evaluated for different experimentally realistic conditions such as the modification of the driving field polarization, the presence of stray magnetic fields or an incoherent resonant electromagnetic field background. The trust interval of the model is quantified for the D2-line of 87Rb atoms but it could be generalized to any closed transition of a multi-level quantum system.
dc.description.sponsorshipAtomes Ultra-Froids piégés dans des Réseaux Optiques Nano-Structurés - ANR-18-CE47-0001
dc.language.isoen
dc.subject.enbackground
dc.subject.enelectromagnetic field
dc.subject.ensaturation
dc.subject.encoherence
dc.subject.enatom
dc.subject.enmultiple scattering
dc.subject.enmediation
dc.subject.enmagnetic field
dc.subject.encosts
dc.subject.enpolarization
dc.subject.enoptical
dc.subject.ennumerical calculations
dc.subject.enscattering
dc.subject.enstructure
dc.title.enEffective two-level approximation of a multi-level system driven by coherent and incoherent fields
dc.typeArticle de revue
dc.identifier.doi10.1103/PhysRevA.105.043105
dc.subject.halPhysique [physics]/Physique [physics]/Physique Générale [physics.gen-ph]
dc.subject.halPhysique [physics]
dc.subject.halPhysique [physics]/Physique [physics]/Physique Atomique [physics.atom-ph]
dc.subject.halPhysique [physics]/Physique Quantique [quant-ph]
dc.identifier.arxiv2110.08894
bordeaux.journalPhys.Rev.A
bordeaux.page043105
bordeaux.volume105
bordeaux.hal.laboratoriesLaboratoire Photonique, Numérique et Nanosciences (LP2N) - UMR 5298*
bordeaux.issue4
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-03658012
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03658012v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Phys.Rev.A&rft.date=2022&rft.volume=105&rft.issue=4&rft.spage=043105&rft.epage=043105&rft.au=VEYRON,%20Romain&MANCOIS,%20Vincent&GERENT,%20Jean-Baptiste&BACLET,%20Guillaume&BOUYER,%20Philippe&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée