Engineering Dirac points with ultracold fermions in optical lattices
hal.structure.identifier | lp2n-03,lp2n-11 | |
hal.structure.identifier | Institute for Quantum Electronics | |
dc.contributor.author | TARRUELL, Leticia | |
hal.structure.identifier | Institute for Quantum Electronics | |
dc.contributor.author | GREIF, Daniel | |
hal.structure.identifier | Institute for Quantum Electronics | |
dc.contributor.author | UEHLINGER, Thomas | |
hal.structure.identifier | Institute for Quantum Electronics | |
dc.contributor.author | JOTZU, Gregor | |
hal.structure.identifier | Institute for Quantum Electronics | |
dc.contributor.author | ESSLINGER, Tilman | |
dc.date.accessioned | 2023-05-12T10:23:12Z | |
dc.date.available | 2023-05-12T10:23:12Z | |
dc.date.created | 2012 | |
dc.date.conference | 2012-08-27 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/181174 | |
dc.description.abstractEn | Dirac points lie at the heart of many fascinating phenomena in condensed matter physics, from massless electrons in graphene to the emergence of conducting edge states in topological insulators. At a Dirac point, two energy bands intersect linearly and the particles behave as relativistic Dirac fermions. In solids, the rigid structure of the material sets the mass and velocity of the particles, as well as their interactions. A different, highly flexible approach is to create model systems using fermionic atoms trapped in an optical lattice, a method which so far has only been applied to explore simple lattice structures. In my talk I will report on the creation of Dirac points with adjustable properties in a tunable honeycomb optical lattice [1]. Using momentum-resolved interband transitions, we observe a minimum band gap inside the Brillouin zone at the position of the Dirac points. We exploit the unique tunability of our lattice potential to adjust the effective mass of the Dirac fermions by breaking the inversion symmetry of the lattice. Moreover, changing the lattice anisotropy allows us to move the position of the Dirac points inside the Brillouin zone. When increasing the anisotropy beyond a critical limit, the two Dirac points merge and annihilate each other. We map out this topological transition in lattice parameter space and find excellent agreement with ab initio calculations. Our results not only pave the way to model materials where the topology of the band structure plays a crucial role, but also provide the possibility to explore many-body phases resulting from the interplay of complex lattice geometries with interactions. | |
dc.language.iso | en | |
dc.title.en | Engineering Dirac points with ultracold fermions in optical lattices | |
dc.type | Communication dans un congrès avec actes | |
dc.subject.hal | Physique [physics]/Matière Condensée [cond-mat]/Gaz Quantiques [cond-mat.quant-gas] | |
bordeaux.hal.laboratories | Laboratoire Photonique, Numérique et Nanosciences (LP2N) - UMR 5298 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | CNRS | |
bordeaux.country | FR | |
bordeaux.title.proceeding | Journées de la Matière Condensée | |
bordeaux.conference.city | Montpellier | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00820434 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00820434v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=TARRUELL,%20Leticia&GREIF,%20Daniel&UEHLINGER,%20Thomas&JOTZU,%20Gregor&ESSLINGER,%20Tilman&rft.genre=proceeding |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |