Temporal Relationship of Ocular and Tail Segmental Movements Underlying Locomotor-Induced Gaze Stabilization During Undulatory Swimming in Larval Xenopus.
dc.rights.license | open | en_US |
hal.structure.identifier | Institut de Neurosciences cognitives et intégratives d'Aquitaine [INCIA] | |
dc.contributor.author | BACQUE CAZENAVE, Julien | |
hal.structure.identifier | Institut de Neurosciences cognitives et intégratives d'Aquitaine [INCIA] | |
dc.contributor.author | COURTAND, Gilles | |
dc.contributor.author | BERANECK, Mathieu | |
hal.structure.identifier | Institut de Neurosciences cognitives et intégratives d'Aquitaine [INCIA] | |
dc.contributor.author | LAMBERT, Francois | |
hal.structure.identifier | Institut de Neurosciences cognitives et intégratives d'Aquitaine [INCIA] | |
dc.contributor.author | COMBES, Denis
ORCID: 0000-0003-3732-7261 | |
dc.date.accessioned | 2023-05-03T07:58:36Z | |
dc.date.available | 2023-05-03T07:58:36Z | |
dc.date.issued | 2018-01-01 | |
dc.identifier.issn | 1662-5110 | en_US |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/173241 | |
dc.description.abstractEn | In larval xenopus, locomotor-induced oculomotor behavior produces gaze-stabilizing eye movements to counteract the disruptive effects of tail undulation during swimming. While neuronal circuitries responsible for feed-forward intrinsic spino-extraocular signaling have recently been described, the resulting oculomotor behavior remains poorly understood. Conveying locomotor CPG efference copy, the spino-extraocular motor command coordinates the multi-segmental rostrocaudal spinal rhythmic activity with the extraocular motor activity. By recording sequences of xenopus tadpole free swimming, we quantified the temporal calibration of conjugate eye movements originating from spino-extraocular motor coupled activity during pre-metamorphic tail-based undulatory swimming. Our results show that eye movements are produced only during robust propulsive forward swimming activity and increase with the amplitude of tail movements. The use of larval isolated and semi-intact fixed head preparations revealed that spinal locomotor networks driving the rostral portion of the tail set the precise timing of the spino-extraocular motor coupling by adjusting the phase relationship between spinal segment and extraocular rhythmic activity with the swimming frequency. The resulting spinal-evoked oculomotor behavior produced conjugated eye movements that were in phase opposition with the mid-caudal part of the tail. This time adjustment is independent of locomotor activity in the more caudal spinal parts of the tail. Altogether our findings demonstrate that locomotor feed-forward spino-extraocular signaling produce conjugate eye movements that compensate specifically the undulation of the mid-caudal tail during active swimming. Finally, this study constitutes the first extensive behavioral quantification of spino-extraocular motor coupling, which sets the basis for understanding the mechanisms of locomotor-induced oculomotor behavior in larval frog. | |
dc.description.sponsorship | Corrélats neurophysiologiques de l'évolution et du développement des stratégies de stabilisation du regard pendant la locomotion chez les vertébrés - ANR-15-CE32-0007 | en_US |
dc.language.iso | EN | en_US |
dc.rights | Attribution 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/us/ | * |
dc.subject.en | Animals | |
dc.subject.en | Eye Movements | |
dc.subject.en | Fixation | |
dc.subject.en | Ocular | |
dc.subject.en | Larva | |
dc.subject.en | Locomotion | |
dc.subject.en | Oculomotor Muscles | |
dc.subject.en | Swimming | |
dc.subject.en | Tail | |
dc.subject.en | Time Factors | |
dc.subject.en | Xenopus laevis | |
dc.title.en | Temporal Relationship of Ocular and Tail Segmental Movements Underlying Locomotor-Induced Gaze Stabilization During Undulatory Swimming in Larval Xenopus. | |
dc.title.alternative | Front Neural Circuits | en_US |
dc.type | Article de revue | en_US |
dc.identifier.doi | 10.3389/fncir.2018.00095 | en_US |
dc.subject.hal | Sciences du Vivant [q-bio]/Neurosciences [q-bio.NC] | en_US |
dc.identifier.pubmed | 30420798 | en_US |
bordeaux.journal | Frontiers in Neural Circuits | en_US |
bordeaux.page | 95 | en_US |
bordeaux.volume | 12 | en_US |
bordeaux.hal.laboratories | Institut de neurosciences cognitives et intégratives d'Aquitaine (INCIA) - UMR 5287 | en_US |
bordeaux.institution | Université de Bordeaux | en_US |
bordeaux.institution | CNRS | en_US |
bordeaux.team | MotoPSYN | en_US |
bordeaux.team | DN3 | en_US |
bordeaux.peerReviewed | oui | en_US |
bordeaux.inpress | non | en_US |
bordeaux.import.source | pubmed | |
hal.export | false | |
workflow.import.source | pubmed | |
dc.rights.cc | Pas de Licence CC | en_US |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Frontiers%20in%20Neural%20Circuits&rft.date=2018-01-01&rft.volume=12&rft.spage=95&rft.epage=95&rft.eissn=1662-5110&rft.issn=1662-5110&rft.au=BACQUE%20CAZENAVE,%20Julien&COURTAND,%20Gilles&BERANECK,%20Mathieu&LAMBERT,%20Francois&COMBES,%20Denis&rft.genre=article |