Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorCOLLIN, Annabelle
IDREF: 181605619
hal.structure.identifierStatistics In System biology and Translational Medicine [SISTM]
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorPRAGUE, Melanie
dc.contributor.authorMOIREAU, Philippe
dc.date.accessioned2023-03-06T08:41:49Z
dc.date.available2023-03-06T08:41:49Z
dc.date.issued2022
dc.identifier.issn2102-5754en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/172160
dc.description.abstractEnEstimation of dynamical systems (in particular, identification of their parameters) is fundamental in computational biology, e.g., pharmacology, virology, or epidemiology, to reconcile model runs with available measurements. Unfortunately, the mean and variance priors of the parameters must be chosen very appropriately to balance our distrust of the measurements when the data are sparse or corrupted by noise. Otherwise, the identification procedure fails. One option is to use repeated measurements collected in configurations with common priors (for example, with multiple subjects in a clinical trial or clusters in an epidemiological investigation). This shared information is beneficial and is typically modeled in statistics using nonlinear mixed-effects models. In this paper, we present a data assimilation method that is compatible with such a mixed-effects strategy without being compromised by the potential curse of dimensionality. We define population-based estimators through maximum likelihood estimation. We then develop an equivalent robust sequential estimator for large populations based on filtering theory that sequentially integrates data. Finally, we limit the computational complexity by defining a reduced-order version of this population-based Kalman filter that clusters subpopulations with common observational backgrounds. The performance of the resulting algorithm is evaluated against classical pharmacokinetics benchmarks. Finally, the versatility of the proposed method is tested in an epidemiological study using real data on the hospitalisation of COVID-19 patients in the regions and departments of France.
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subject.enData Assimilation
dc.subject.enNon linear mixed-effect models
dc.subject.enKalman Filters
dc.subject.enEpidemiology
dc.subject.enCOVID-19
dc.subject.enPharmacokinetics
dc.title.enEstimation for dynamical systems using a population-based Kalman filter – Applications in computational biology
dc.typeArticle de revueen_US
dc.identifier.doi10.5802/msia.25en_US
dc.subject.halSciences du Vivant [q-bio]/Santé publique et épidémiologieen_US
bordeaux.journalMathematicS In Actionen_US
bordeaux.page213-242en_US
bordeaux.volume11en_US
bordeaux.hal.laboratoriesBordeaux Population Health Research Center (BPH) - UMR 1219en_US
bordeaux.issue1en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionINSERMen_US
bordeaux.teamSISTM_BPHen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.exportfalse
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=MathematicS%20In%20Action&rft.date=2022&rft.volume=11&rft.issue=1&rft.spage=213-242&rft.epage=213-242&rft.eissn=2102-5754&rft.issn=2102-5754&rft.au=COLLIN,%20Annabelle&PRAGUE,%20Melanie&MOIREAU,%20Philippe&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée