Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierLaboratoire de Chimie des Polymères Organiques [LCPO]
hal.structure.identifierTeam 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
dc.contributor.authorBARKER, Micah
hal.structure.identifierLaboratoire de Chimie des Polymères Organiques [LCPO]
hal.structure.identifierTeam 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
dc.contributor.authorNICOLINI, Tommaso
hal.structure.identifierLaboratoire de Chimie des Polymères Organiques [LCPO]
hal.structure.identifierTeam 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
dc.contributor.authorAL YAMAN, Yasmina
hal.structure.identifierLaboratoire de l'intégration, du matériau au système [IMS]
dc.contributor.authorTHUAU, Damien
hal.structure.identifierTeam 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
hal.structure.identifierLaboratoire de Chimie des Polymères Organiques [LCPO]
dc.contributor.authorSISCAN, Olga
hal.structure.identifierLaboratoire de Chimie des Polymères Organiques [LCPO]
hal.structure.identifierTeam 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
dc.contributor.authorRAMACHANDRAN, Sasikumar
hal.structure.identifierLaboratoire de Chimie des Polymères Organiques [LCPO]
hal.structure.identifierTeam 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
dc.contributor.authorCLOUTET, Eric
IDREF: 151048681
hal.structure.identifierLaboratoire de Chimie des Polymères Organiques [LCPO]
hal.structure.identifierTeam 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
dc.contributor.authorBROCHON, Cyril
hal.structure.identifierMaterial Measurement Laboratory
dc.contributor.authorRICHTER, Lee
dc.contributor.authorDAUTEL, Olivier Joseph
hal.structure.identifierLaboratoire de Chimie des Polymères Organiques [LCPO]
hal.structure.identifierTeam 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
dc.contributor.authorHADZIIOANNOU, Georges
hal.structure.identifierLaboratoire de Chimie des Polymères Organiques [LCPO]
hal.structure.identifierTeam 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
dc.contributor.authorSTINGELIN, Natalie
dc.date.accessioned2023-02-28T09:00:44Z
dc.date.available2023-02-28T09:00:44Z
dc.date.issued2022-11-14
dc.identifier.issn2051-6347en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/172112
dc.description.abstractEnA model mixed-conducting polymer, blended with an amphiphilic blockcopolymer, is shown to yield systems with drastically enhanced electrochemical doping kinetics, leading to faster electrochemical transistors with a high transduction. Importantly, this approach is robust and reproducible, and should be readily adaptable to other mixed conductors without the need for exhaustive chemical modification. New Concepts: Semiconducting polymers attract great interest for bioelectronics applications due to their soft nature and mixed ionicelectronic conduction capabilities. So far, most efforts focused on enhancing mixed-conducting functionalities by introducing polar side chains. Here, we show that blending offers a powerful, general approach to improve mixed conduction. We used a block copolymer of poly(3-hexylthiophene) and poly(ethylene oxide) (P3HT-b-PEO) as additive for a relatively poorly performing model material based on a random copolymer between 3-hexylthiophene and 3-(6hydroxy)hexylthiophene, (P(3HT-co-3HHT)), to unambigously demonstrate the benefit of our strategy. Blends and neat P(3HT-co-3HHT) show similar transduction performance when implemented in organic electrochemical transistors (OECT)s, yet, intriguingly, blends display drastically reduced drain-current hysteresis because of faster electrochemical doping; i.e., blends introduce ion-transporting pathways without negatively affecting the semiconductor's electronic conductivity. This is desired for electrochemical transducer operation and is rendered possible via use of the amphiphilic block copolymer that imparts hydrophilicity to the active layer and promotes partial miscibility between blend components, preventing the need of stabilizing the films by cross-linking. Additionally, a notable thresholdvoltage stability across gate-potential sweep rates and a low impedance is found, thanks to the electrolyte/redox-polymer compatibilization due to the presence of the additive, rendering these blends promising for numerous applications, including electrochemical biosensing.
dc.language.isoENen_US
dc.title.enConjugated Polymer Blends for Faster Organic Mixed Conductors
dc.typeArticle de revueen_US
dc.identifier.doi10.1039/D2MH00861Ken_US
dc.subject.halChimie/Polymèresen_US
bordeaux.journalMaterials Horizonsen_US
bordeaux.page248-256en_US
bordeaux.volume10en_US
bordeaux.hal.laboratoriesIMS : Laboratoire de l'Intégration du Matériau au Système - UMR 5218en_US
bordeaux.issue1en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcehal
hal.identifierhal-03857276
hal.version1
hal.exportfalse
workflow.import.sourcehal
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Materials%20Horizons&rft.date=2022-11-14&rft.volume=10&rft.issue=1&rft.spage=248-256&rft.epage=248-256&rft.eissn=2051-6347&rft.issn=2051-6347&rft.au=BARKER,%20Micah&NICOLINI,%20Tommaso&AL%20YAMAN,%20Yasmina&THUAU,%20Damien&SISCAN,%20Olga&rft.genre=article


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée