Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
hal.structure.identifierLaboratoire de l'intégration, du matériau au système [IMS]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorGIRAUD, Remi
IDREF: 22338545
hal.structure.identifierLaboratoire de l'intégration, du matériau au système [IMS]
dc.contributor.authorBOYER, Merlin
hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
dc.contributor.authorCLEMENT, Michael
IDREF: 22471175X
dc.date.accessioned2022-11-22T08:59:57Z
dc.date.available2022-11-22T08:59:57Z
dc.date.issued2020-05-01
dc.identifier.issn0167-8655en_US
dc.identifier.urioai:crossref.org:10.48550/arxiv.2003.04428
dc.identifier.urioai:crossref.org:10.1016/j.patrec.2020.02.018
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/170340
dc.description.abstractEnOver-segmentation into superpixels is a very effective dimensionality reduction strategy, enabling fast dense image processing. The main issue of this approach is the inherent irregularity of the image decomposition compared to standard hierarchical multi-resolution schemes, especially when searching for similar neighboring patterns. Several works have attempted to overcome this issue by taking into account the region irregularity into their comparison model. Nevertheless, they remain sub-optimal to provide robust and accurate superpixel neighborhood descriptors, since they only compute features within each region, poorly capturing contour information at superpixel borders. In this work, we address these limitations by introducing the dual superpatch, a novel superpixel neighborhood descriptor. This structure contains features computed in reduced superpixel regions, as well as at the interfaces of multiple superpixels to explicitly capture contour structure information. A fast multi-scale non-local matching framework is also introduced for the search of similar descriptors at different resolution levels in an image dataset. The proposed dual superpatch enables to more accurately capture similar structured patterns at different scales, and we demonstrate the robustness and performance of this new strategy on matching and supervised labeling applications.
dc.language.isoENen_US
dc.sourcecrossref
dc.title.enMulti-scale superpatch matching using dual superpixel descriptors
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.patrec.2020.02.018en_US
dc.subject.halInformatique [cs]en_US
dc.identifier.arxivarXiv:2003.04428en_US
bordeaux.journalPattern Recognition Lettersen_US
bordeaux.page129-136en_US
bordeaux.volume133en_US
bordeaux.hal.laboratoriesIMS : Laboratoire d’Intégration du Matériau au Système - UMR 5218en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcedissemin
hal.exportfalse
workflow.import.sourcedissemin
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Pattern%20Recognition%20Letters&rft.date=2020-05-01&rft.volume=133&rft.spage=129-136&rft.epage=129-136&rft.eissn=0167-8655&rft.issn=0167-8655&rft.au=GIRAUD,%20Remi&BOYER,%20Merlin&CLEMENT,%20Michael&rft.genre=article


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée