Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorADACHI, Taiki
dc.contributor.authorMAZURENKO, Ievgen
hal.structure.identifierCentre de Recherche Paul Pascal [CRPP]
dc.contributor.authorMANO, Nicolas
dc.contributor.authorKITAZUMI, Yuki
dc.contributor.authorKATAOKA, Kunishige
dc.contributor.authorKANO, Kenji
dc.contributor.authorSOWA, Keisei
dc.contributor.authorLOJOU, Elisabeth
dc.date.accessioned2022-10-29T09:27:01Z
dc.date.available2022-10-29T09:27:01Z
dc.date.issued2022-10-01
dc.identifier.issn0013-4686en_US
dc.identifier.urioai:crossref.org:10.1016/j.electacta.2022.140987
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/170152
dc.description.abstractEnCopper efflux oxidases (CueOs) are key enzymes in copper homeostasis systems. The mechanisms involved are however largely unknown. CueO-type enzymes share a typical structural feature composed of Methionine-rich (Met-rich) domains that are proposed to be involved in copper homeostasis. Bioelectrocatalysis using CueO-type enzymes in the presence of Cu2+ recently highlighted a new Cu2+-dependent catalytic pathway related to a cuprous oxidase activity. In this work, we further investigated the effects of Cu2+ on direct electron transfer (DET)-type bioelectrocatalytic reduction of O2 by CueO at NH2-functionalized multi-walled carbon nanotubes. The DET-type bioelectrocatalytic activity of CueO decreased at low potential in the presence of Cu2+, showing unique peak-shaped voltammograms that we attribute to inactivation and reactivation processes. Chronoamperometry was used to kinetically analyze these processes, and the results suggested linear free energy relationships between the inactivation/reactivation rate constant and the electrode potential. Pseudo-steady-state analysis also indicated that Cu2+ uncompetitively inhibited the enzymatic activity. A detailed model for the Cu2+-dependent reductive inactivation of CueO was proposed to explain the electrochemical data, and the related thermodynamic and kinetic parameters. A CueO variant with truncated copper-binding α helices and bilirubin oxidase free of Met-rich domains also showed such reductive inactivation process, which suggests that multicopper oxidases contain copper-binding sites that lead to inactivation.
dc.language.isoENen_US
dc.sourcecrossref
dc.subject.enMulticopper oxidase
dc.subject.enCopper efflux oxidase
dc.subject.enDirect electron transfer
dc.subject.enBioelectrochemistry
dc.subject.enCu2+ effects
dc.title.enKinetic and thermodynamic analysis of Cu2+-dependent reductive inactivation in direct electron transfer-type bioelectrocatalysis by copper efflux oxidase
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.electacta.2022.140987en_US
dc.subject.halSciences du Vivant [q-bio]/Biochimie, Biologie Moléculaireen_US
bordeaux.journalElectrochimica Actaen_US
bordeaux.page140987en_US
bordeaux.volume429en_US
bordeaux.hal.laboratoriesCentre de Recherche Paul Pascal (CRPP) - UMR 5031en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionCNRSen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcedissemin
hal.exportfalse
workflow.import.sourcedissemin
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Electrochimica%20Acta&rft.date=2022-10-01&rft.volume=429&rft.spage=140987&rft.epage=140987&rft.eissn=0013-4686&rft.issn=0013-4686&rft.au=ADACHI,%20Taiki&MAZURENKO,%20Ievgen&MANO,%20Nicolas&KITAZUMI,%20Yuki&KATAOKA,%20Kunishige&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée