Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorMILLS, A.
dc.contributor.authorAISSAOUI, N.
dc.contributor.authorMAUREL, D.
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
hal.structure.identifierCentre de Recherche Paul Pascal [CRPP]
dc.contributor.authorELEZGARAY, Juan
dc.contributor.authorMORVAN, F.
dc.contributor.authorVASSEUR, J.
dc.contributor.authorMARGEAT, E.
dc.contributor.authorQUAST, R.
dc.contributor.authorLAI KEE-HIM, J.
dc.contributor.authorSAINT, N.
dc.contributor.authorBENISTANT, C.
dc.contributor.authorNORD, A.
dc.contributor.authorPEDACI, F.
dc.contributor.authorBELLOT, G.
dc.date.accessioned2022-10-29T09:04:58Z
dc.date.available2022-10-29T09:04:58Z
dc.date.issued2022-12
dc.identifier.issn2041-1723en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/170150
dc.description.abstractEnAbstract How cells respond to mechanical forces by converting them into biological signals underlie crucial cellular processes. Our understanding of mechanotransduction has been hindered by technical barriers, including limitations in our ability to effectively apply low range piconewton forces to specific mechanoreceptors on cell membranes without laborious and repetitive trials. To overcome these challenges we introduce the Nano-winch, a robust, easily assembled, programmable DNA origami-based molecular actuator. The Nano-winch is designed to manipulate multiple mechanoreceptors in parallel by exerting fine-tuned, low- piconewton forces in autonomous and remotely activated modes via adjustable single- and double-stranded DNA linkages, respectively. Nano-winches in autonomous mode can land and operate on the cell surface. Targeting the device to integrin stimulated detectable downstream phosphorylation of focal adhesion kinase, an indication that Nano-winches can be applied to study cellular mechanical processes. Remote activation mode allowed finer extension control and greater force exertion. We united remotely activated Nano-winches with single-channel bilayer experiments to directly observe the opening of a channel by mechanical force in the force responsive gated channel protein, BtuB. This customizable origami provides an instrument-free approach that can be applied to control and explore a diversity of mechanotransduction circuits on living cells.
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.title.enA modular spring-loaded actuator for mechanical activation of membrane proteins
dc.typeArticle de revueen_US
dc.identifier.doi10.1038/s41467-022-30745-2en_US
dc.subject.halSciences du Vivant [q-bio]en_US
bordeaux.journalNature Communicationsen_US
bordeaux.page3182en_US
bordeaux.volume13en_US
bordeaux.hal.laboratoriesCentre de Recherche Paul Pascal (CRPP) - UMR 5031en_US
bordeaux.issue1en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionCNRSen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcehal
hal.identifierhal-03751001
hal.version1
hal.exportfalse
workflow.import.sourcehal
dc.rights.ccCC BYen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Nature%20Communications&rft.date=2022-12&rft.volume=13&rft.issue=1&rft.spage=3182&rft.epage=3182&rft.eissn=2041-1723&rft.issn=2041-1723&rft.au=MILLS,%20A.&AISSAOUI,%20N.&MAUREL,%20D.&ELEZGARAY,%20Juan&MORVAN,%20F.&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée