Large-scale regulatory and signaling network assembly through linked open data
hal.structure.identifier | Biologie du fruit et pathologie [BFP] | |
dc.contributor.author | LEFEBVRE, Marie | |
hal.structure.identifier | ITX - unité de recherche de l'institut du thorax [ITX] | |
dc.contributor.author | GAIGNARD, Alban | |
hal.structure.identifier | BioComputing | |
hal.structure.identifier | Centrale Lille | |
dc.contributor.author | FOLSCHETTE, Maxime | |
hal.structure.identifier | Combinatoire et Bioinformatique [LS2N - équipe COMBI] | |
hal.structure.identifier | Université de Nantes - UFR des Sciences et des Techniques [UN UFR ST] | |
hal.structure.identifier | Laboratoire des Sciences du Numérique de Nantes [LS2N] | |
dc.contributor.author | BOURDON, Jérémie | |
hal.structure.identifier | Combinatoire et Bioinformatique [LS2N - équipe COMBI] | |
hal.structure.identifier | École Centrale de Nantes [ECN] | |
hal.structure.identifier | Laboratoire des Sciences du Numérique de Nantes [LS2N] | |
dc.contributor.author | GUZIOLOWSKI, Carito | |
dc.date.issued | 2021 | |
dc.identifier.issn | 1758-0463 | |
dc.description.abstractEn | Huge efforts are currently underway to address the organization of biological knowledge through linked open databases. These databases can be automatically queried to reconstruct regulatory and signaling networks. However, assembling networks implies manual operations due to sourcespecific identification of biological entities and relationships, multiple life-science databases with redundant information, and the difficulty of recovering logical flows in biological pathways. We propose a framework based on Semantic Web technologies to automate the reconstruction of largescale regulatory and signaling networks in the context of tumor cells modeling and drug screening. The proposed tool is pyBRAvo (python Biological netwoRk Assembly), and here we have applied it to a dataset of 910 gene expression measurements issued from liver cancer patients. The tool is publicly available at https://github.com/pyBRAvo/pyBRAvo | |
dc.description.sponsorship | BIOelectrosynthèse pour le Raffinage des déchets Residuels - ANR-10-BTBR-0002 | |
dc.language.iso | en | |
dc.publisher | Oxford University Press | |
dc.rights.uri | http://creativecommons.org/licenses/by/ | |
dc.title.en | Large-scale regulatory and signaling network assembly through linked open data | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1093/database/baaa113 | |
dc.subject.hal | Informatique [cs]/Bio-informatique [q-bio.QM] | |
dc.subject.hal | Sciences du Vivant [q-bio]/Bio-Informatique, Biologie Systémique [q-bio.QM] | |
dc.subject.hal | Informatique [cs]/Modélisation et simulation | |
dc.subject.hal | Informatique [cs]/Base de données [cs.DB] | |
dc.subject.hal | Sciences du Vivant [q-bio] | |
bordeaux.journal | Database - The journal of Biological Databases and Curation | |
bordeaux.page | baaa113 | |
bordeaux.volume | 2021 | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-03107317 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-03107317v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Database%20-%20The%20journal%20of%20Biological%20Databases%20and%20Curation&rft.date=2021&rft.volume=2021&rft.spage=baaa113&rft.epage=baaa113&rft.eissn=1758-0463&rft.issn=1758-0463&rft.au=LEFEBVRE,%20Marie&GAIGNARD,%20Alban&FOLSCHETTE,%20Maxime&BOURDON,%20J%C3%A9r%C3%A9mie&GUZIOLOWSKI,%20Carito&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |