Afficher la notice abrégée

hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorBELOUAH, Isma
hal.structure.identifierGénétique Quantitative et Evolution - Le Moulon (Génétique Végétale) [GQE-Le Moulon]
dc.contributor.authorBLEIN-NICOLAS, Melisande
hal.structure.identifierGénétique Quantitative et Evolution - Le Moulon (Génétique Végétale) [GQE-Le Moulon]
dc.contributor.authorBALLIAU, Thierry
hal.structure.identifierBiologie du fruit et pathologie [BFP]
dc.contributor.authorGIBON, Yves
hal.structure.identifierGénétique Quantitative et Evolution - Le Moulon (Génétique Végétale) [GQE-Le Moulon]
dc.contributor.authorZIVY, Michel
hal.structure.identifierBiologie du fruit et pathologie [BFP]
dc.contributor.authorCOLOMBIE, Sophie
dc.date.issued2019-02
dc.identifier.issn1874-3919
dc.description.abstractEnIn bottom-up proteomics, data are acquired on peptides resulting from proteolysis. In XIC-based quantification, the quality of the estimation of protein abundance depends on how peptide data are filtered and on which quantification method is used to express peptide intensity as protein abundance. So far, these two questions have been addressed independently. Here, we studied to what extent the relative performances of the quantification methods depend on the filters applied to peptide intensity data. To this end, we performed a spike-in experiment using Universal Protein Standard to evaluate the performances of five quantification methods in five datasets obtained after application of four peptide filters. Estimated protein abundances were not equally affected by filters depending on the computation mode and the type of data for quantification. Furthermore, we found that filters could have contrasting effects depending on the quantification objective. Intensity modeling proved to be the most robust method, providing the best results in the absence of any filter. However, the different quantification methods can achieve similar performances when appropriate peptide filters are used. Altogether, our findings provide insights into how best to handle intensity data according to the quantification objective and the experimental design. SIGNIFICANCE: We believe that our results are of major importance because they address, as far as we know for the first time, the crossed-effects of peptide intensity data filtering and XIC-based quantification methods on protein quantification. While previous papers have dealt with peptide filtering independently of the quantification method, here we combined four peptide filters (based on peptide sharing between proteins, retention time variability, peptides occurrence and peptide intensity profiles) with five XIC-based quantification methods representing different modes of calculating protein abundances from peptide intensities. For these different combinations, we analyzed the quality of protein quantification in terms of precision, accuracy and linearity of response to increasing protein concentration using a spike-in experiment. We showed that not only filters effect on the estimation of protein abundances depend on the quantification methods but also that quantification methods can reach similar performances when appropriate peptide filters are used. Also, depending on the quantification objective, i.e. absolute or relative, filters can have contrasting effects and we demonstrated that protein quantification by the peptide intensity modeling was the most robust method.
dc.description.sponsorshipModélisation intégrative du fruit pour un système de sélection unifié - ANR-15-CE20-0009
dc.language.isoen
dc.publisherElsevier
dc.rights.urihttp://creativecommons.org/licenses/by-nc/
dc.title.enPeptide filtering differently affects the performances of XIC-based quantification methods
dc.typeArticle de revue
dc.identifier.doi10.1016/j.jprot.2018.10.003
dc.subject.halSciences du Vivant [q-bio]
dc.subject.halSciences du Vivant [q-bio]/Biochimie, Biologie Moléculaire/Génomique, Transcriptomique et Protéomique [q-bio.GN]
bordeaux.journalJournal of Proteomics
bordeaux.page131-141
bordeaux.volume193
bordeaux.peerReviewedoui
hal.identifierhal-02327322
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02327322v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Proteomics&rft.date=2019-02&rft.volume=193&rft.spage=131-141&rft.epage=131-141&rft.eissn=1874-3919&rft.issn=1874-3919&rft.au=BELOUAH,%20Isma&BLEIN-NICOLAS,%20Melisande&BALLIAU,%20Thierry&GIBON,%20Yves&ZIVY,%20Michel&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée