Afficher la notice abrégée

hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorGAO, Zhenghong
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorOUDJEDI, Laura
hal.structure.identifierCentre de Recherche Paul Pascal [CRPP]
dc.contributor.authorFAES, Romain
hal.structure.identifierLaboratoire Ondes et Matière d'Aquitaine [LOMA]
dc.contributor.authorMOROTÉ, Fabien
hal.structure.identifierCentre de Recherche Paul Pascal [CRPP]
dc.contributor.authorJAILLET, Christèle
hal.structure.identifierCentre de Recherche Paul Pascal [CRPP]
dc.contributor.authorPOULIN, Philippe
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorLOUNIS, Brahim
hal.structure.identifierLaboratoire Photonique, Numérique et Nanosciences [LP2N]
dc.contributor.authorCOGNET, Laurent
dc.date.created2015-06-30
dc.date.issued2015-11-25
dc.identifier.issn2045-2322
dc.description.abstractEnUltrashort single-walled carbon nanotubes, i.e. with length below ~30 nm, display length-dependent physical, chemical and biological properties that are attractive for the development of novel nanodevices and nanomaterials. Whether fundamental or applicative, such developments require that ultrashort nanotube lengths can be routinely and reliably characterized with high statistical data for high-quality sample production. However, no methods currently fulfill these requirements. Here, we demonstrate that photothermal microscopy achieves fast and reliable optical single nanotube analysis down to ~10 nm lengths. Compared to atomic force microscopy, this method provides ultrashort nanotubes length distribution with high statistics, and neither requires specific sample preparation nor tip-dependent image analysis. Ultrashort single-walled carbon nanotubes (usCNTs) hold unique physical, chemical and biological properties that can be used for applications in diverse areas. In condensed matter physics, both theory and experiments have shown that the nanotube electronic band-gap increases as their length shortens down to tens of nanometers in response to quantum confinement effect along the length axis
dc.description.sponsorshipNanotubes de carbone ultra-courts : des nano-marqueurs proche-infrarouges pour le suivi de biomolécules dans des tissus vivants du cerveau. - ANR-10-BLAN-1527
dc.description.sponsorshipOutils pour la quantification tissulaire par imagerie: Histopathologie à haut contenu de tissus humains et artificiels - ANR-11-RPIB-0004
dc.description.sponsorshipDéveloppement d'une infrastructure française distribuée coordonnée - ANR-10-INBS-0004
dc.description.sponsorshipInitiative d'excellence de l'Université de Bordeaux
dc.language.isoen
dc.publisherNature Publishing Group
dc.rights.urihttp://creativecommons.org/licenses/by/
dc.title.enOptical detection of individual ultra-short carbon nanotubes enables their length characterization down to 10 nm
dc.typeArticle de revue
dc.identifier.doi10.1038/srep17093
dc.subject.halPhysique [physics]/Physique [physics]/Optique [physics.optics]
bordeaux.journalScientific Reports
bordeaux.page17093 (1-10)
bordeaux.volume5
bordeaux.peerReviewedoui
hal.identifierhal-01254740
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01254740v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Scientific%20Reports&rft.date=2015-11-25&rft.volume=5&rft.spage=17093%20(1-10)&rft.epage=17093%20(1-10)&rft.eissn=2045-2322&rft.issn=2045-2322&rft.au=GAO,%20Zhenghong&OUDJEDI,%20Laura&FAES,%20Romain&MOROT%C3%89,%20Fabien&JAILLET,%20Christ%C3%A8le&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée