Afficher la notice abrégée

hal.structure.identifierLaboratoire Ondes et Matière d'Aquitaine [LOMA]
dc.contributor.authorDEAN, David S
hal.structure.identifierLaboratoire de Physique Théorique et Modèles Statistiques [LPTMS]
dc.contributor.authorGUPTA, Shamik
hal.structure.identifierLaboratoire de Physique Théorique de la Matière Condensée [LPTMC]
dc.contributor.authorOSHANIN, Gleb
hal.structure.identifierLaboratoire de Physique Théorique et Modèles Statistiques [LPTMS]
dc.contributor.authorROSSO, Alberto
hal.structure.identifierLaboratoire de Physique Théorique et Modèles Statistiques [LPTMS]
dc.contributor.authorSCHEHR, Grégory
dc.date.created2014-07-15
dc.date.issued2014
dc.identifier.issn1751-8113
dc.description.abstractEnWe study the dynamics of a Brownian particle in a strongly correlated quenched random potential defined as a periodically-extended (with period $L$) finite trajectory of a fractional Brownian motion with arbitrary Hurst exponent $H \in (0,1)$. While the periodicity ensures that the ultimate long-time behavior is diffusive, the generalised Sinai potential considered here leads to a strong logarithmic confinement of particle trajectories at intermediate times. These two competing trends lead to dynamical frustration and result in a rich statistical behavior of the diffusion coefficient $D_L$: Although one has the typical value $D^{\rm typ}_L \sim \exp(-\beta L^H)$, we show via an exact analytical approach that the positive moments ($k>0$) scale like $\langle D^k_L \rangle \sim \exp{[-c' (k \beta L^{H})^{1/(1+H)}]}$, and the negative ones as $\langle D^{-k}_L \rangle \sim \exp(a' (k \beta L^{H})^2)$, $c'$ and $a'$ being numerical constants and $\beta$ the inverse temperature. These results demonstrate that $D_L$ is strongly non-self-averaging. We further show that the probability distribution of $D_L$ has a log-normal left tail and a highly singular, one-sided log-stable right tail reminiscent of a Lifshitz singularity.
dc.description.sponsorshipMarcheurs Browniens répulsifs et matrices aléatoires - ANR-11-BS04-0013
dc.language.isoen
dc.publisherIOP Publishing
dc.rights.urihttp://creativecommons.org/licenses/by-sa/
dc.subject.enBrownian motion
dc.subject.enquenched disorder
dc.subject.enanomalous dynamics
dc.title.enDiffusion in periodic, correlated random forcing landscapes
dc.typeArticle de revue
dc.identifier.doi10.1088/1751-8113/47/37/372001
dc.subject.halPhysique [physics]/Matière Condensée [cond-mat]/Mécanique statistique [cond-mat.stat-mech]
dc.identifier.arxiv1406.2612
bordeaux.journalJournal of Physics A: Mathematical and Theoretical
bordeaux.page372001
bordeaux.volume47
bordeaux.issue37
bordeaux.peerReviewedoui
hal.identifierhal-01069753
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01069753v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Physics%20A:%20Mathematical%20and%20Theoretical&rft.date=2014&rft.volume=47&rft.issue=37&rft.spage=372001&rft.epage=372001&rft.eissn=1751-8113&rft.issn=1751-8113&rft.au=DEAN,%20David%20S&GUPTA,%20Shamik&OSHANIN,%20Gleb&ROSSO,%20Alberto&SCHEHR,%20Gr%C3%A9gory&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée