Afficher la notice abrégée

hal.structure.identifierThermoelectricity Laboratory [CEA, LITEN]
dc.contributor.authorSAVELLI, Guillaume
hal.structure.identifierThermoelectricity Laboratory [CEA, LITEN]
dc.contributor.authorSILVEIRA STEIN, Sergio
hal.structure.identifierThermoelectricity Laboratory [CEA, LITEN]
dc.contributor.authorBERNARD-GRANGER, Guillaume
hal.structure.identifierThermoelectricity Laboratory [CEA, LITEN]
dc.contributor.authorFAUCHERAND, Pascal
hal.structure.identifierInstitut de Microélectronique, Electromagnétisme et Photonique - Laboratoire d'Hyperfréquences et Caractérisation [IMEP-LAHC]
dc.contributor.authorMONTÈS, Laurent
hal.structure.identifierLaboratoire Ondes et Matière d'Aquitaine [LOMA]
dc.contributor.authorDILHAIRE, Stefan
hal.structure.identifierLaboratoire Ondes et Matière d'Aquitaine [LOMA]
dc.contributor.authorPERNOT, Gilles
dc.date.created2015-04-08
dc.date.issued2015
dc.identifier.issn0957-4484
dc.description.abstractEnTi-based silicide quantum dot superlattices (QDSLs) are grown by reduced-pressure chemical vapor deposition. They are made of titanium-based silicide nanodots scattered in an n-doped SiGe matrix. This is the first time that such nanostructured materials have been grown in both monocrystalline and polycrystalline QDSLs. We studied their crystallographic structures and chemical properties, as well as the size and the density of the quantum dots. The thermoelectric properties of the QDSLs are measured and compared to equivalent SiGe thin films to evaluate the influence of the nanodots. Our studies revealed an increase in their thermoelectric properties specifically, up to a trifold increase in the power factor, with a decrease in the thermal conductivity making them very good candidates for further thermoelectric applications in cooling or energy-harvesting fields.
dc.language.isoen
dc.publisherInstitute of Physics
dc.rights.urihttp://creativecommons.org/licenses/by-sa/
dc.subject.enQuantum Dots Superlattices
dc.subject.enNanostructures
dc.subject.enSilicides
dc.subject.enThermoelectrics
dc.subject.enCVD
dc.title.enTitanium-based silicide quantum dot superlattices for thermoelectrics applications
dc.typeArticle de revue
dc.identifier.doi10.1088/0957-4484/26/27/275605
dc.subject.halSciences de l'ingénieur [physics]/Micro et nanotechnologies/Microélectronique
bordeaux.journalNanotechnology
bordeaux.page275605
bordeaux.volume26
bordeaux.issue27
bordeaux.peerReviewedoui
hal.identifierhal-01407030
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01407030v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Nanotechnology&rft.date=2015&rft.volume=26&rft.issue=27&rft.spage=275605&rft.epage=275605&rft.eissn=0957-4484&rft.issn=0957-4484&rft.au=SAVELLI,%20Guillaume&SILVEIRA%20STEIN,%20Sergio&BERNARD-GRANGER,%20Guillaume&FAUCHERAND,%20Pascal&MONT%C3%88S,%20Laurent&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée