Mostrar el registro sencillo del ítem
Stability of Conductivities in an Inverse Problem in the Reaction-diffusion System in Electrocardiology
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | AINSEBA, Bedr'Eddine | |
hal.structure.identifier | Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN] | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | BENDAHMANE, Mostafa | |
hal.structure.identifier | Department of Mathematics and Statistics [Lanzhou] | |
dc.contributor.author | YUAN, He | |
dc.date.issued | 2015-05-01 | |
dc.identifier.issn | 1556-1801 | |
dc.description.abstractEn | In this paper, we study the stability result for the conductivities diffusion coefficients to a strongly reaction-diffusion system modeling electrical activity in the heart. To study the problem, we establish a Carleman estimate for our system. The proof is based on the combination of a Carleman estimate and certain weight energy estimates for parabolic systems. 1. Introduction. Let Ω ⊂ R N (N ≥ 1) be a bounded connected open set whose boundary ∂Ω is regular enough. Let T > 0 and ω be a small nonempty subset of Ω. We will denote (0, T) × Ω by Q T and (0, T) × ∂Ω by Σ T. To state the model of the cardiac electric activity in Ω (Ω ⊂ R 3 being the natural domain of the heart), we set u i = u i (t, x) and u e = u e (t, x) to represent the spacial cellular and location x ∈ Ω of the intracellular and extracellular electric potentials respectively. Their difference v = u i − u e is the transmembrane potential. The anisotropic properties of the two media are modeled by intracellular and extracellular conductivity tensors M i (x) and M e (x). The surface capacitance of the membrane is represented by the constant c m > 0. The transmembrane ionic current is represented by a nonlinear function h(v). The equations governing the cardiac electric activity are given by the coupled reaction-diffusion system: c m ∂ t v − div(M i (x)∇u i) + h(v) = f χ ω , in Q T , c m ∂ t v + div(M e (x)∇u e) + h(v) = gχ ω , in Q T , (1) where f and g are stimulation currents applied to Ω. We complete this model with Dirichlet boundary conditions for the intra-and extracellular electric potentials | |
dc.language.iso | en | |
dc.publisher | American Institute of Mathematical Sciences | |
dc.title.en | Stability of Conductivities in an Inverse Problem in the Reaction-diffusion System in Electrocardiology | |
dc.type | Article de revue | |
dc.identifier.doi | 10.3934/nhm.2015.10.xx | |
dc.subject.hal | Mathématiques [math] | |
dc.subject.hal | Mathématiques [math]/Optimisation et contrôle [math.OC] | |
bordeaux.journal | Networks and Heterogeneous Media | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01256802 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01256802v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Networks%20and%20Heterogeneous%20Media&rft.date=2015-05-01&rft.eissn=1556-1801&rft.issn=1556-1801&rft.au=AINSEBA,%20Bedr'Eddine&BENDAHMANE,%20Mostafa&YUAN,%20He&rft.genre=article |
Archivos en el ítem
Archivos | Tamaño | Formato | Ver |
---|---|---|---|
No hay archivos asociados a este ítem. |