Afficher la notice abrégée

hal.structure.identifierLaboratoire de Mathématiques Jean Leray [LMJL]
hal.structure.identifierUniversité de Nantes [UN]
dc.contributor.authorBLACHÈRE, Florian
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierInstitut Polytechnique de Bordeaux [Bordeaux INP]
dc.contributor.authorTURPAULT, Rodolphe
dc.date.issued2016
dc.identifier.issn0021-9991
dc.description.abstractEnThe objective of this work is to design explicit finite volumes schemes for specific systems of conservations laws with stiff source terms, which degenerate into diffusion equations. We propose a general framework to design an asymptotic preserving scheme, that is stable and consistent under a classical hyperbolic CFL condition in both hyperbolic and diffusive regime, for any two-dimensional unstructured mesh. Moreover, the scheme developed also preserves the set of admissible states, which is mandatory to keep physical solutions in stiff configurations. This construction is achieved by using a non-linear scheme as a target scheme for the diffusive equation, which gives the form of the global scheme for the complete system of conservation laws. Numerical results are provided to validate the scheme in both regimes.
dc.description.sponsorshipCapture de l'Asymptotique pour des Systèmes Hyperboliques de Lois de Conservation avec Termes Source - ANR-14-CE25-0001
dc.description.sponsorshipCentre de Mathématiques Henri Lebesgue : fondements, interactions, applications et Formation - ANR-11-LABX-0020
dc.language.isoen
dc.publisherElsevier
dc.subject.enfinite volume schemes
dc.subject.en2D unstructured mesh
dc.subject.enasymptotic-preserving schemes
dc.subject.enadmissibility-preserving schemes
dc.subject.enconservation laws with source terms
dc.title.enAn admissibility and asymptotic-preserving scheme for systems of conservation laws with source term on 2D unstructured meshes
dc.typeArticle de revue
dc.identifier.doi10.1016/j.jcp.2016.03.045
dc.subject.halMathématiques [math]/Analyse numérique [math.NA]
bordeaux.journalJournal of Computational Physics
bordeaux.peerReviewedoui
hal.identifierhal-01293971
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01293971v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Computational%20Physics&rft.date=2016&rft.eissn=0021-9991&rft.issn=0021-9991&rft.au=BLACH%C3%88RE,%20Florian&TURPAULT,%20Rodolphe&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée