Afficher la notice abrégée

hal.structure.identifierLaboratoire Ondes et Matière d'Aquitaine [LOMA]
dc.contributor.authorEL HADDAD, Josette
hal.structure.identifierIVEA Solution
dc.contributor.authorVILLOT-KADRI, M.
hal.structure.identifierIVEA Solution
dc.contributor.authorISMAEL, Amina
hal.structure.identifierIVEA Solution
dc.contributor.authorGALLOU, G.
hal.structure.identifierBureau de Recherches Géologiques et Minières [BRGM]
dc.contributor.authorMICHEL, Karine
hal.structure.identifierBureau de Recherches Géologiques et Minières [BRGM]
dc.contributor.authorBRUYÈRE, Delphine
hal.structure.identifierBureau de Recherches Géologiques et Minières [BRGM]
dc.contributor.authorLAPERCHE, Valérie
hal.structure.identifierLaboratoire Ondes et Matière d'Aquitaine [LOMA]
dc.contributor.authorCANIONI, Lionel
hal.structure.identifierLaboratoire Ondes et Matière d'Aquitaine [LOMA]
dc.contributor.authorBOUSQUET, Bruno
dc.date.created2012-09-13
dc.date.issued2013-02-01
dc.identifier.issn0584-8547
dc.description.abstractEnNowadays, due to environmental concerns, fast on-site quantitative analyses of soils are required. Laser induced breakdown spectroscopy is a serious candidate to address this challenge and is especially well suited for multi-elemental analysis of heavy metals. However, saturation and matrix effects prevent from a simple treatment of the LIBS data, namely through a regular calibration curve. This paper details the limits of this approach and consequently emphasizes the advantage of using artificial neural networks well suited for non-linear and multi-variate calibration. This advanced method of data analysis is evaluated in the case of real soil samples and on-site LIBS measurements. The selection of the LIBS data as input data of the network is particularly detailed and finally, resulting errors of prediction lower than 20% for aluminum, calcium, copper and iron demonstrate the good efficiency of the artificial neural networks for on-site quantitative LIBS of soils.
dc.language.isoen
dc.publisherElsevier
dc.rights.urihttp://creativecommons.org/licenses/by-nc/
dc.subject.enLaser-induced breakdown spectroscopy (LIBS)
dc.subject.enSoil
dc.subject.enQuantitative analysis
dc.subject.enArtificial neural network
dc.title.enArtificial neural network for on-site quantitative analysis of soils using laser induced breakdown spectroscopy
dc.typeArticle de revue
dc.identifier.doi10.1016/j.sab.2012.11.007
dc.subject.halPhysique [physics]/Physique [physics]/Optique [physics.optics]
bordeaux.journalSpectrochimica Acta Part B: Atomic Spectroscopy
bordeaux.page51-57
bordeaux.volume78-79
bordeaux.peerReviewedoui
hal.identifierhal-00788952
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00788952v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Spectrochimica%20Acta%20Part%20B:%20Atomic%20Spectroscopy&rft.date=2013-02-01&rft.volume=78-79&rft.spage=51-57&rft.epage=51-57&rft.eissn=0584-8547&rft.issn=0584-8547&rft.au=EL%20HADDAD,%20Josette&VILLOT-KADRI,%20M.&ISMAEL,%20Amina&GALLOU,%20G.&MICHEL,%20Karine&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée