Afficher la notice abrégée

hal.structure.identifierBiostatistique
hal.structure.identifierEpidémiologie, santé publique et développement
dc.contributor.authorCOMMENGES, Daniel
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierQuality control and dynamic reliability [CQFD]
dc.contributor.authorGÉGOUT-PETIT, Anne
hal.structure.identifierBiostatistique
dc.contributor.authorJOLY, Pierre
hal.structure.identifierBiostatistique
hal.structure.identifierInstitut de Santé Publique, d'Epidémiologie et de Développement [ISPED]
hal.structure.identifierLaboratoire de Statistiques et Analyse des Données [LABSAD]
hal.structure.identifierStatistique Appliquée et de Géométrie Aléatoire de Grenoble [SAGAG]
dc.contributor.authorLIQUET, Benoit
dc.date.created2006
dc.date.issued2007-03
dc.identifier.issn0303-6898
dc.description.abstractEnWe consider models based on multivariate counting processes, including multi‐state models. These models are specified semi‐parametrically by a set of functions and real parameters. We consider inference for these models based on coarsened observations, focusing on families of smooth estimators such as produced by penalized likelihood. An important issue is the choice of model structure, for instance, the choice between a Markov and some non‐Markov models. We define in a general context the expected Kullback–Leibler criterion and we show that the likelihood‐based cross-validation (LCV) is a nearly unbiased estimator of it. We give a general form of an approximate of the leave‐one‐out LCV. The approach is studied by simulations, and it is illustrated by estimating a Markov and two semi‐Markov illness–death models with application on dementia using data of a large cohort study.
dc.language.isoen
dc.publisherWiley
dc.subject.encounting processes
dc.subject.encross-validation
dc.subject.endementia
dc.subject.eninterval-censoring
dc.subject.enKullback–Leibler loss
dc.subject.enMarkov models
dc.subject.enmulti-state models
dc.subject.enpenalized likelihood
dc.subject.ensemi-Markov models
dc.title.enChoice between Semi-parametric Estimators of Markov and Non-Markov Multi-state Models from Coarsened Observations
dc.typeArticle de revue
dc.identifier.doi10.1111/j.1467-9469.2006.00536.x
dc.subject.halMathématiques [math]/Statistiques [math.ST]
dc.subject.halStatistiques [stat]/Théorie [stat.TH]
bordeaux.journalScandinavian Journal of Statistics
bordeaux.page33-52
bordeaux.volume34
bordeaux.issue1
bordeaux.peerReviewedoui
hal.identifierhal-00194275
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00194275v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Scandinavian%20Journal%20of%20Statistics&rft.date=2007-03&rft.volume=34&rft.issue=1&rft.spage=33-52&rft.epage=33-52&rft.eissn=0303-6898&rft.issn=0303-6898&rft.au=COMMENGES,%20Daniel&G%C3%89GOUT-PETIT,%20Anne&JOLY,%20Pierre&LIQUET,%20Benoit&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée