Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierThéorie des Nombres et Algorithmique Arithmétique [A2X]
dc.contributor.authorCADORET, Anna
dc.date.issued2008
dc.identifier.issn0021-2172
dc.description.abstractEnHurwitz moduli spaces for G-covers of the pro jective line have two classical variants whether G- covers are considered modulo the action of PGL2 on the base or not. A central result of this paper is that, given an integer r ≥ 3 there exists a bound d(r) ≥ 1 depending only on r such that any rational point p rd of a reduced (i.e. modulo PGL2 ) Hurwitz space can be lifted to a rational point p on the non reduced Hurwitz space with [κ(p) : κ(prd )] ≤ d(r). This result can also be generalized to infinite towers of Hurwitz spaces. Introducing a new Galois invariant for G-covers, which we call the base invariant, we improve this result for G-covers with a non trivial base invariant. For the sublocus corresponding to such G-covers the bound d(r) can be chosen depending only on the base invariant (no longer on r) and ≤ 6. When r = 4, our method can still be refined to provide effective criteria to lift k-rational points from reduced to non reduced Hurwitz spaces. This, in particular, leads to a rigidity criterion, a genus 0 method and, what we call an expansion method to realize finite groups as regular Galois groups over Q. Some specific examples are given.
dc.language.isoen
dc.publisherSpringer
dc.title.enLifting results for rational points on Hurwitz moduli spaces
dc.typeArticle de revue
bordeaux.journalIsrael Journal of Mathematics
bordeaux.page19-61
bordeaux.volume164
bordeaux.peerReviewedoui
hal.identifierhal-00355695
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00355695v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Israel%20Journal%20of%20Mathematics&rft.date=2008&rft.volume=164&rft.spage=19-61&rft.epage=19-61&rft.eissn=0021-2172&rft.issn=0021-2172&rft.au=CADORET,%20Anna&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée