Computational modeling of solid tumor growth: the avascular stage
hal.structure.identifier | Laboratoire de Mathématiques [LAMA] | |
dc.contributor.author | BRESCH, Didier | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Modélisation, contrôle et calcul [MC2] | |
dc.contributor.author | COLIN, Thierry | |
hal.structure.identifier | Unité de Mathématiques Pures et Appliquées [UMPA-ENSL] | |
dc.contributor.author | GRENIER, Emmanuel | |
hal.structure.identifier | Ciblage thérapeutique en Oncologie [EA3738] | |
dc.contributor.author | RIBBA, Benjamin | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Modélisation, contrôle et calcul [MC2] | |
dc.contributor.author | SAUT, Olivier | |
dc.date.created | 2007 | |
dc.date.issued | 2010 | |
dc.identifier.issn | 1064-8275 | |
dc.description.abstractEn | In this paper, we present a mathematical model for avascular tumor growth and its numerical study in two and three dimensions. For this purpose, we use a multiscale model using PDEs to describe the evolution of the tumor cell densities. In our model, cell cycle regulation depends mainly on micro-environment. The cancer growth of volume induces cells motion and tumor expansion. According to biology, cells grow against a basal membrane which interacts mechanistically with the tumor. We use a level set method to describe this membrane and we compute its influence on cell movement thanks to a Stokes equation. The evolution of oxygen, diffusing from blood vessel to cancer cells and used to estimate hypoxia, is given by a stationary diffusion equation solved with a penalization method. The model has been applied to investigate the therapeutic benefit of anti-invasive agents and constitutes now the basis of a numerical platform for tumor growth simulation. | |
dc.language.iso | en | |
dc.publisher | Society for Industrial and Applied Mathematics | |
dc.subject.en | Avascular tumor growth. Multiscale models. Cell cycle modeling. Fluid dynamics. Level-set methods. | |
dc.subject.en | Avascular tumor growth. Multiscale models. Cell cycle modeling. Fluid dynamics. Level-set methods | |
dc.title.en | Computational modeling of solid tumor growth: the avascular stage | |
dc.type | Article de revue | |
dc.subject.hal | Informatique [cs]/Modélisation et simulation | |
dc.subject.hal | Mathématiques [math]/Equations aux dérivées partielles [math.AP] | |
dc.subject.hal | Physique [physics]/Mécanique [physics]/Mécanique des fluides [physics.class-ph] | |
dc.subject.hal | Sciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des fluides [physics.class-ph] | |
dc.subject.hal | Sciences du Vivant [q-bio]/Cancer | |
bordeaux.journal | SIAM Journal on Scientific Computing | |
bordeaux.page | 2321-2344 | |
bordeaux.volume | 32 | |
bordeaux.issue | 4 | |
bordeaux.peerReviewed | oui | |
hal.identifier | inria-00148610 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//inria-00148610v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=SIAM%20Journal%20on%20Scientific%20Computing&rft.date=2010&rft.volume=32&rft.issue=4&rft.spage=2321-2344&rft.epage=2321-2344&rft.eissn=1064-8275&rft.issn=1064-8275&rft.au=BRESCH,%20Didier&COLIN,%20Thierry&GRENIER,%20Emmanuel&RIBBA,%20Benjamin&SAUT,%20Olivier&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |