Time-harmonic Maxwell equations in biological cells. The differential form formalism to treat the thin layer
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS] | |
dc.contributor.author | DURUFLÉ, Marc | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Advanced 3D Numerical Modeling in Geophysics [Magique 3D] | |
dc.contributor.author | PÉRON, Victor | |
hal.structure.identifier | Modélisation, contrôle et calcul [MC2] | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | POIGNARD, Clair | |
dc.date.created | 2010 | |
dc.date.issued | 2011 | |
dc.identifier.issn | 1793-7442 | |
dc.description.abstractEn | We study the behavior of the electromagnetic field in a biological cell modelled by a medium surrounded by a thin layer and embedded in an ambient medium. We derive approximate transmission conditions in order to replace the membrane by these conditions on the boundary of the interior domain. Our approach is essentially geometric and based on a suitable change of variables in the thin layer. Few notions of differential calculus are given in order to obtain the first order conditions in a simple way, and numerical simulations validate the theoretical results. Asymptotic transmission conditions at any order are given in the last section of the paper. | |
dc.language.iso | en | |
dc.publisher | Institut Camille Jordan et Unité de Mathématiques Pures et Appliquées | |
dc.subject.en | asymptotic expansion | |
dc.subject.en | time-harmonic Maxwell's equations | |
dc.subject.en | differential forms on manifolds | |
dc.subject.en | finite element method | |
dc.subject.en | edge elements | |
dc.title.en | Time-harmonic Maxwell equations in biological cells. The differential form formalism to treat the thin layer | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1142/S1793744211000345 | |
dc.subject.hal | Mathématiques [math]/Equations aux dérivées partielles [math.AP] | |
bordeaux.journal | Confluentes Mathematici | |
bordeaux.page | 325-357 | |
bordeaux.volume | 3 | |
bordeaux.issue | 2 | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00651510 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00651510v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Confluentes%20Mathematici&rft.date=2011&rft.volume=3&rft.issue=2&rft.spage=325-357&rft.epage=325-357&rft.eissn=1793-7442&rft.issn=1793-7442&rft.au=DURUFL%C3%89,%20Marc&P%C3%89RON,%20Victor&POIGNARD,%20Clair&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |