Afficher la notice abrégée

hal.structure.identifierÉquipe Calcul scientifique et Modélisation
dc.contributor.authorSELOULA, Nour El Houda
hal.structure.identifierLaboratoire de Mathématiques et de leurs Applications [Pau] [LMAP]
dc.contributor.authorAMROUCHE, Chérif
dc.date.created2011-10-03
dc.description.abstractEnIn a three dimensional bounded possibly multiply-connected domain, we give gradient and higher order estimates of vector fields via div and curl in Lp theory. Then, we prove the existence and uniqueness of vector potentials, associated with a divergence-free function and satisfying some boundary conditions. We also present some results concerning scalar potentials and weak vector potentials. Furthermore, we consider the stationary Stokes equations with nonstandard boundary conditions of the form u × n = g × n and π = π0 on the boundary Γ. We prove the existence and uniqueness of weak, strong and very weak solutions. Our proofs are based on obtaining Inf − Sup conditions that play a fundamental role. We give a variant of the Stokes system with these boundary conditions, in the case where the compatibility condition is not verified. Finally, we give two Helmholtz decompositions that consist of two kinds of boundary conditions such as u * n and u × n on Γ.
dc.language.isoen
dc.subject.enVector Potentials
dc.subject.enboundary conditions
dc.subject.enStokes
dc.subject.enHelmholtz decomposition
dc.subject.enInf-Sup condition
dc.subject.enSobolev inequality.
dc.subject.enSobolev inequality
dc.title.enLP -THEORY FOR VECTOR POTENTIALS AND SOBOLEV'S INEQUALITIES FOR VECTOR FIELDS. APPLICATION TO THE STOKES EQUATIONS WITH PRESSURE BOUNDARY CONDITIONS
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
hal.identifierhal-00686230
hal.version1
hal.audienceNon spécifiée
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00686230v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=SELOULA,%20Nour%20El%20Houda&AMROUCHE,%20Ch%C3%A9rif&rft.genre=preprint


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée