Mostrar el registro sencillo del ítem
Existence of Primitive Divisors of Lucas and Lehmer Numbers
dc.contributor.author | BILU, Yuri | |
hal.structure.identifier | Polynomials, Combinatorics, Arithmetic [POLKA] | |
dc.contributor.author | HANROT, Guillaume | |
dc.contributor.author | VOUTIER, Paul | |
dc.date.created | 1999 | |
dc.date.issued | 1999 | |
dc.description.abstractEn | We prove that for $n$ > 30, every $n$-th Lucas and Lehmer number has a primitive divisor. This allows us to list all Lucas and Lehmer numbers without a primitive divisor. | |
dc.language.iso | en | |
dc.subject.en | linear recurrence sequence | |
dc.subject.en | diophantine equations | |
dc.subject.en | thue equations | |
dc.subject.en | linear form in logarithms | |
dc.title.en | Existence of Primitive Divisors of Lucas and Lehmer Numbers | |
dc.type | Rapport | |
dc.subject.hal | Informatique [cs]/Autre [cs.OH] | |
bordeaux.page | 41 | |
bordeaux.type.institution | INRIA | |
bordeaux.type.report | rr | |
hal.identifier | inria-00072867 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//inria-00072867v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=1999&rft.spage=41&rft.epage=41&rft.au=BILU,%20Yuri&HANROT,%20Guillaume&VOUTIER,%20Paul&rft.genre=unknown |
Archivos en el ítem
Archivos | Tamaño | Formato | Ver |
---|---|---|---|
No hay archivos asociados a este ítem. |