Afficher la notice abrégée

hal.structure.identifierAcademy of Mathematics and Systems Science [AMSS]
dc.contributor.authorHUANG, Jingchi
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorPAICU, Marius
hal.structure.identifierAcademy of Mathematics and Systems Science [AMSS]
dc.contributor.authorZHANG, Ping
dc.description.abstractEnIn this paper, we first prove the global existence of weak solutions to the d-dimensional incompressible inhomogeneous Navier-Stokes equations with initial data in critical Besov spaces, which satisfies a non-linear smallness condition. The regularity of the initial velocity is critical to the scaling of this system and is general enough to generate non-Lipschitz velocity field. Furthermore, with additional regularity assumption on the initial velocity or on the initial density, we can also prove the uniqueness of such solution. We should mention that the classical maximal regularity theorem for the heat kernel plays an essential role in this context.
dc.language.isoen
dc.subject.enInhomogeneous Navier-Stokes equations
dc.subject.enmaximal regularity for heat kernel
dc.subject.enLittlewood-Paley theory.
dc.subject.enLittlewood-Paley theory
dc.title.enGlobal wellposdeness to incompressible inhomogeneous fluid system with bounded density and non-Lipschitz velocity
dc.typeDocument de travail - Pré-publication
dc.subject.halPhysique [physics]/Mécanique [physics]/Mécanique des fluides [physics.class-ph]
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des fluides [physics.class-ph]
dc.identifier.arxiv1212.3917
hal.identifierhal-00765697
hal.version1
hal.audienceNon spécifiée
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00765697v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=HUANG,%20Jingchi&PAICU,%20Marius&ZHANG,%20Ping&rft.genre=preprint


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée