Global wellposdeness to incompressible inhomogeneous fluid system with bounded density and non-Lipschitz velocity
hal.structure.identifier | Academy of Mathematics and Systems Science [AMSS] | |
dc.contributor.author | HUANG, Jingchi | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | PAICU, Marius | |
hal.structure.identifier | Academy of Mathematics and Systems Science [AMSS] | |
dc.contributor.author | ZHANG, Ping | |
dc.description.abstractEn | In this paper, we first prove the global existence of weak solutions to the d-dimensional incompressible inhomogeneous Navier-Stokes equations with initial data in critical Besov spaces, which satisfies a non-linear smallness condition. The regularity of the initial velocity is critical to the scaling of this system and is general enough to generate non-Lipschitz velocity field. Furthermore, with additional regularity assumption on the initial velocity or on the initial density, we can also prove the uniqueness of such solution. We should mention that the classical maximal regularity theorem for the heat kernel plays an essential role in this context. | |
dc.language.iso | en | |
dc.subject.en | Inhomogeneous Navier-Stokes equations | |
dc.subject.en | maximal regularity for heat kernel | |
dc.subject.en | Littlewood-Paley theory. | |
dc.subject.en | Littlewood-Paley theory | |
dc.title.en | Global wellposdeness to incompressible inhomogeneous fluid system with bounded density and non-Lipschitz velocity | |
dc.type | Document de travail - Pré-publication | |
dc.subject.hal | Physique [physics]/Mécanique [physics]/Mécanique des fluides [physics.class-ph] | |
dc.subject.hal | Sciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des fluides [physics.class-ph] | |
dc.identifier.arxiv | 1212.3917 | |
hal.identifier | hal-00765697 | |
hal.version | 1 | |
hal.audience | Non spécifiée | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00765697v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=HUANG,%20Jingchi&PAICU,%20Marius&ZHANG,%20Ping&rft.genre=preprint |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |