Afficher la notice abrégée

hal.structure.identifierLaboratoire d'Analyse et de Mathématiques Appliquées [LAMA]
dc.contributor.authorGUILLOPE, Colette
hal.structure.identifierDepartment of Mathematics, Statistics and Computer Science [Chicago] [UIC]
dc.contributor.authorBONA, Jerry
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierModélisation, contrôle et calcul [MC2]
dc.contributor.authorCOLIN, Thierry
dc.date.issued2013-02-01
dc.identifier.issn1078-0947
dc.description.abstractEnThe present essay is concerned with a model for the propagation ofthree-dimensional, surface water waves. Of especial interest will be long-crestedwaves such as those sometimes observed in canals and in near-shore zones oflarge bodies of water. Such waves propagate primarily in one direction, taken tobe the x−direction in a Cartesian framework, and variations in the horizontaldirection orthogonal to the primary direction, the y−direction, say, are oftenignored. However, there are situations where weak variations in the secondaryhorizontal direction need to be taken into account.Our results are developed in the context of Boussinesq models, so they areapplicable to waves that have small amplitude and long wavelength when comparedwith the undisturbed depth. Included in the theory are well-posednessresults on the long, Boussinesq time scale. As mentioned, particular interestis paid to the lateral dynamics, which turn out to satisfy a reduced Boussinesqsystem. Waves corresponding to disturbances which are localized in thex−direction as well as bore-like disturbances that have infinite energy are takenup in the discussion.
dc.language.isoen
dc.publisherAmerican Institute of Mathematical Sciences
dc.subject.enLong-crested water waves
dc.subject.enBousinesq system
dc.subject.enbore propagation
dc.subject.eninitial-boundary-value problems
dc.title.enPropagation of long-crested water waves
dc.typeArticle de revue
dc.identifier.doi10.3934/dcds.2013.33.599
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
bordeaux.journalDiscrete and Continuous Dynamical Systems - Series A
bordeaux.page599-628
bordeaux.volume33
bordeaux.issue2
bordeaux.peerReviewedoui
hal.identifierhal-00803947
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00803947v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Discrete%20and%20Continuous%20Dynamical%20Systems%20-%20Series%20A&rft.date=2013-02-01&rft.volume=33&rft.issue=2&rft.spage=599-628&rft.epage=599-628&rft.eissn=1078-0947&rft.issn=1078-0947&rft.au=GUILLOPE,%20Colette&BONA,%20Jerry&COLIN,%20Thierry&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée