Afficher la notice abrégée

hal.structure.identifierSection de mathématiques [Genève]
dc.contributor.authorGANDER, Martin
hal.structure.identifierLaboratoire Analyse, Géométrie et Applications [LAGA]
dc.contributor.authorHALPERN, Laurence
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierModélisation, contrôle et calcul [MC2]
dc.contributor.authorSANTUGINI-REPIQUET, Kévin
dc.date.created2012-12-10
dc.description.abstractEnWe explain in this paper why continuous coarse spaces are a suboptimal choice for domain decomposition methods that have discontinuous iterates, like for example restricted Additive Schwarz methods, or optimized Schwarz methods. As an alternative, we propose discontinuous coarse spaces for such methods. For linear problems, we show how to design one such discontinuous coarse space and present an algorithm that computes an efficient discontinuous coarse space correction for the special case of an optimized Schwarz method. While the algorithm is suitable for higher dimensions, it has the special property of converging in a single coarse iteration for one-dimensional linear problems. We illustrate our new algorithm by numerical experiments.
dc.language.isoen
dc.subject.endiscontinuous coarse space
dc.subject.enoptimized Schwarz method
dc.subject.enrestricted additive Schwarz method
dc.title.enDiscontinuous Coarse Spaces for DD-Methods with Discontinuous Iterates
dc.typeRapport
dc.subject.halMathématiques [math]/Analyse numérique [math.NA]
hal.identifierhal-00765821
hal.version1
hal.audienceNon spécifiée
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00765821v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=GANDER,%20Martin&HALPERN,%20Laurence&SANTUGINI-REPIQUET,%20K%C3%A9vin&rft.genre=unknown


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée